RESUMO
RATIONALE: The influence of the lung bacterial microbiome, including potential pathogens, in patients with influenza- or COVID-19-associated pulmonary aspergillosis (IAPA or CAPA) is yet to be explored. OBJECTIVES: To explore the composition of the lung bacterial microbiome and its association with viral and fungal infection, immunity and outcome in severe influenza versus COVID-19 with or without aspergillosis. METHODS: We performed a retrospective study in mechanically ventilated influenza and COVID-19 patients with or without invasive aspergillosis in whom bronchoalveolar lavage (BAL) for bacterial culture (with or without PCR) was obtained within two weeks after ICU admission. Additionally, 16S rRNA gene sequencing data and viral and bacterial load of BAL samples from a subset of these patients, and of patients requiring non-invasive ventilation, were analyzed. We integrated 16S rRNA gene sequencing data with existing immune parameter datasets. MEASUREMENTS AND MAIN RESULTS: Potential bacterial pathogens were detected in 20% (28/142) of influenza and 37% (104/281) of COVID-19 patients, while aspergillosis was detected in 38% (54/142) of influenza and 31% (86/281) of COVID-19 patients. A significant association between bacterial pathogens in BAL and 90-day mortality was found only in influenza patients, particularly IAPA patients. COVID-19 but not influenza patients showed increased pro-inflammatory pulmonary cytokine responses to bacterial pathogens. CONCLUSIONS: Aspergillosis is more frequently detected in lungs of severe influenza patients than bacterial pathogens. Detection of bacterial pathogens associates with worse outcome in influenza patients, particularly in those with IAPA, but not in COVID-19 patients. The immunological dynamics of tripartite viral-fungal-bacterial interactions deserve further investigation. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).
RESUMO
We investigate the emergence, mutation profile, and dissemination of SARS-CoV-2 lineage B.1.214.2, first identified in Belgium in January 2021. This variant, featuring a 3-amino acid insertion in the spike protein similar to the Omicron variant, was speculated to enhance transmissibility or immune evasion. Initially detected in international travelers, it substantially transmitted in Central Africa, Belgium, Switzerland, and France, peaking in April 2021. Our travel-aware phylogeographic analysis, incorporating travel history, estimated the origin to the Republic of the Congo, with primary European entry through France and Belgium, and multiple smaller introductions during the epidemic. We correlate its spread with human travel patterns and air passenger data. Further, upon reviewing national reports of SARS-CoV-2 outbreaks in Belgian nursing homes, we found this strain caused moderately severe outcomes (8.7% case fatality ratio). A distinct nasopharyngeal immune response was observed in elderly patients, characterized by 80% unique signatures, higher B- and T-cell activation, increased type I IFN signaling, and reduced NK, Th17, and complement system activation, compared to similar outbreaks. This unique immune response may explain the variant's epidemiological behavior and underscores the need for nasal vaccine strategies against emerging variants.
Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Idoso , Masculino , Viagem , Bélgica/epidemiologia , Pessoa de Meia-Idade , Feminino , Adulto , Filogeografia , Nasofaringe/virologiaRESUMO
Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Proteínas dos Retroviridae/metabolismo , Células HEK293 , Infecções por HTLV-I/etiologia , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Células Jurkat , Splicing de RNA , RNA Mensageiro , Fator de Processamento U2AF/metabolismoRESUMO
BACKGROUND: HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is an incapacitating neuroinflammatory disorder for which no disease-modifying therapy is available, but corticosteroids provide some clinical benefit. Although HAM/TSP pathogenesis is not fully elucidated, older age, female sex and higher proviral load are established risk factors. We investigated systemic cytokines and a novel chronic inflammatory marker, GlycA, as possible biomarkers of immunopathogenesis and therapeutic response in HAM/TSP, and examined their interaction with established risk factors. PATIENTS AND METHODS: We recruited 110 People living with HTLV-1 (PLHTLV-1, 67 asymptomatic individuals and 43 HAM/TSP patients) with a total of 946 person-years of clinical follow-up. Plasma cytokine levels (IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, TNF) and GlycA were quantified by Cytometric Bead Array and 1NMR, respectively. Cytokine signaling and prednisolone response were validated in an independent cohort by nCounter digital transcriptomics. We used multivariable regression, machine learning algorithms and Bayesian network learning for biomarker identification. RESULTS: We found that systemic IL-6 was positively correlated with both age (r = 0.50, p < 0.001) and GlycA (r = 0.45, p = 0.00049) in asymptomatics, revealing an 'inflammaging" signature which was absent in HAM/TSP. GlycA levels were higher in women (p = 0.0069), but cytokine levels did not differ between the sexes. IFN-γ (p = 0.007) and IL-17A (p = 0.0001) levels were increased in untreated HAM/TSP Multivariable logistic regression identified IL-17A and proviral load as independent determinants of clinical status, resulting in modest accuracy of predicting HAM/TSP status (64.1%), while a machine learning-derived decision tree classified HAM/TSP patients with 90.7% accuracy. Pre-treatment GlycA and TNF levels significantly predicted clinical worsening (measured by Osame Motor Disability Scale), independent of proviral load. In addition, a poor prednisolone response was significantly correlated with higher post-treatment IFN-γ levels. Likewise, a transcriptomic IFN signaling score, significantly correlated with previously proposed HAM/TSP biomarkers (CASP5/CXCL10/FCGR1A/STAT1), was efficiently blunted by in vitro prednisolone treatment of PBMC from PLHTLV-1 and incident HAM/TSP. CONCLUSIONS: An age-related increase in systemic IL-6/GlycA levels reveals inflammaging in PLHTLV-1, in the absence of neurological disease. IFN-γ and IL-17A are biomarkers of untreated HAM/TSP, while pre-treatment GlycA and TNF predict therapeutic response to prednisolone pulse therapy, paving the way for a precision medicine approach in HAM/TSP.
Assuntos
Infecções por HTLV-I , Transtornos Motores , Doenças Neuroinflamatórias , Feminino , Humanos , Teorema de Bayes , Citocinas , Vírus Linfotrópico T Tipo 1 Humano , Interleucina-17 , Interleucina-6 , Leucócitos Mononucleares , Transtornos Motores/virologia , Doenças Neuroinflamatórias/virologia , Infecções por HTLV-I/complicaçõesRESUMO
We investigated the genetic profiles of killer cell immunoglobulin-like receptors (KIRs) in Ebola virus-infected patients. We studied the relationship between KIR-human leukocyte antigen (HLA) combinations and the clinical outcomes of patients with Ebola virus disease (EVD). We genotyped KIRs and HLA class I alleles using DNA from uninfected controls, EVD survivors, and persons who died of EVD. The activating 2DS4-003 and inhibitory 2DL5 genes were significantly more common among persons who died of EVD; 2DL2 was more common among survivors. We used logistic regression analysis and Bayesian modeling to identify 2DL2, 2DL5, 2DS4-003, HLA-B-Bw4-Thr, and HLA-B-Bw4-Ile as probably having a significant relationship with disease outcome. Our findings highlight the importance of innate immune response against Ebola virus and show the association between KIRs and the clinical outcome of EVD.
Assuntos
Doença pelo Vírus Ebola , Alelos , Teorema de Bayes , Genótipo , Antígenos HLA , Doença pelo Vírus Ebola/epidemiologia , Humanos , Receptores KIR/genéticaRESUMO
IFN-stimulated gene 15 (ISG15) deficiency in humans leads to severe IFNopathies and mycobacterial disease, the latter being previously attributed to its extracellular cytokine-like activity. In this study, we demonstrate a novel role for secreted ISG15 as an IL-10 inducer, unique to primary human monocytes. A balanced ISG15-induced monocyte/IL-10 versus lymphoid/IFN-γ expression, correlating with p38 MAPK and PI3K signaling, was found using targeted in vitro and ex vivo systems analysis of human transcriptomic datasets. The specificity and MAPK/PI3K-dependence of ISG15-induced monocyte IL-10 production was confirmed in vitro using CRISPR/Cas9 knockout and pharmacological inhibitors. Moreover, this ISG15/IL-10 axis was amplified in leprosy but disrupted in human active tuberculosis (TB) patients. Importantly, ISG15 strongly correlated with inflammation and disease severity during active TB, suggesting its potential use as a biomarker, awaiting clinical validation. In conclusion, this study identifies a novel anti-inflammatory ISG15/IL-10 myeloid axis that is disrupted in active TB.
Assuntos
Citocinas/imunologia , Interleucina-10/imunologia , Leucócitos Mononucleares/imunologia , Tuberculose/imunologia , Ubiquitinas/imunologia , HumanosRESUMO
Retinoic acid-related drugs have shown promising pre-clinical activity in Adult T-cell Leukemia/Lymphoma, but RORC signaling has not been explored. Therefore, we investigated transcriptome-wide interactions of the RORC pathway in HTLV-1 and ATL, using our own and publicly available gene expression data for ATL and other leukemias. Gene expression data from ATL patients were analyzed using WGCNA to determine gene modules and their correlation to clinical and molecular data. Both PBMCs and CD4+ T-Cells exhibited decreased RORC expression in four different ATL cohorts. A small subset of RORChi ATL patients was identified with significantly lower pathognomonic CADM1 and HBZ levels but similar levels of other ATL markers (CD4/CD25/CCR4), hinting at a less aggressive ATL subtype. An age-dependent decrease in RORC expression was found in HTLV-1-infected individuals, but not in healthy controls, suggesting an early molecular event predisposing to leukemogenesis. Genes upstream of RORC signaling were members of a proliferative gene module (containing proliferation markers PCNA/Ki67), whereas downstream members clustered in an anti-proliferative gene module. IL17C transcripts showed the strongest negative correlation to PCNA in both ATL cohorts, which was replicated in two large cohorts of T- and B-cell acute lymphoid leukemia (ALL). Finally, IL17C expression in purified CD4 + CCR4 + CD26-CD7- "ATL-like" cells from HTLV-1-infected individuals and ATL patients was negatively correlated with clonality, underscoring a possible antileukemic/antiproliferative role. In conclusion, decreased RORC expression and downstream signaling might represent an early event in ATL pathogenesis. An antiproliferative IL17C/PCNA link is shared between ATL, T-ALL and B-ALL, suggesting (immuno)therapeutic benefit of boosting RORC/IL17 signaling.
Assuntos
Regulação para Baixo , Interleucina-17/genética , Leucemia-Linfoma de Células T do Adulto/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Transdução de Sinais , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Molécula 1 de Adesão Celular/genética , Estudos de Coortes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Pessoa de Meia-Idade , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas dos Retroviridae/genética , Adulto JovemRESUMO
Unfettered inflammation is thought to play critical role in the development of different clinical forms of tegumentary leishmaniasis. Eicosanoids are potent mediators of inflammation and tightly associated with modulation of immune responses. In this cross-sectional exploratory study, we addressed whether targets from the eicosanoid biosynthetic pathway, assessed by multiplexed expression assays in lesion biopsy and plasma specimens, could highlight a distinct biosignature in patients with mucocutaneous leishmaniasis (MCL) or localized cutaneous leishmaniasis (LCL). Differences in immunopathogenesis between MCL and LCL may result from an imbalance between prostaglandins and leukotrienes, which may serve as targets for future host-directed therapies.
Assuntos
Antiprotozoários/uso terapêutico , Eicosanoides/metabolismo , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/metabolismo , Adulto , Idoso , Estudos Transversais , Eicosanoides/sangue , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Leishmaniose Mucocutânea/tratamento farmacológico , Leishmaniose Mucocutânea/metabolismo , Masculino , Pessoa de Meia-IdadeRESUMO
Diffuse cutaneous leishmaniasis (DCL) is a rare clinical manifestation of tegumentary leishmaniasis. The molecular mechanisms underlying DCL pathogenesis remain unclear, and there is no efficient treatment available. This study investigated the systemic and in situ expression of the inflammatory response that might contribute to suppression in DCL. The plasma levels of arginase I, ornithine decarboxylase (ODC), transforming growth factor ß (TGF-ß), and prostaglandin E2 (PGE2) were higher in patients with DCL, compared with patients with localized cutaneous leishmaniasis (LCL) or with controls from an area of endemicity. In situ transcriptomic analyses reinforced the association between arginase I expression and enzymes involved in prostaglandin and polyamine synthesis. Immunohistochemistry confirmed that arginase I, ODC, and cyclooxygenase2 expression was higher in lesion biopsy specimens from patients with DCL than in those from patients with LCL. Inhibition of arginase I or ODC abrogates L. amazonensis replication in infected human macrophages. Our data implicate arginase I, ODC, PGE2, and TGF-ß in the failure to mount an efficient immune response and suggest perspectives in the development of new strategies for therapeutic intervention for patients with DCL.
Assuntos
Arginase/genética , Dinoprostona/genética , Inflamação/genética , Leishmaniose Tegumentar Difusa/genética , Poliaminas/metabolismo , Adolescente , Adulto , Idoso , Arginase/sangue , Criança , Pré-Escolar , Dinoprostona/sangue , Feminino , Humanos , Inflamação/sangue , Leishmaniose Tegumentar Difusa/sangue , Masculino , Pessoa de Meia-Idade , Ornitina Descarboxilase/sangue , Ornitina Descarboxilase/genética , Poliaminas/sangue , Transdução de Sinais/genética , Transcriptoma/genética , Fator de Crescimento Transformador beta/sangue , Fator de Crescimento Transformador beta/genética , Adulto JovemRESUMO
We show that increased plasma superoxide dismutase 1 (SOD1) levels are statistically significant predictors of the failure of pentavalent antimony treatment for cutaneous leishmaniasis caused by Leishmania braziliensis. In Leishmania amazonensis-infected patients, host SOD1 levels can be used to discriminate between localized and drug-resistant diffuse cutaneous leishmaniasis. Using in situ transcriptomics (nCounter), we demonstrate a significant positive correlation between host SOD1 and interferon α/ß messenger RNA (mRNA) levels, as well as interkingdom correlation between host SOD1 and parasite SOD2/4 mRNA levels. In human macrophages, in vitro treatment with SOD1 increases the parasite burden and induces a diffuse cutaneous leishmaniasis-like morphology. Thus, SOD1 is a clinically relevant biomarker and a therapeutic target in both localized and diffuse cutaneous leishmaniasis.
Assuntos
Antimônio/uso terapêutico , Antiprotozoários/uso terapêutico , Biomarcadores/sangue , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/patologia , Superóxido Dismutase/sangue , Adulto , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Superóxido Dismutase-1 , Falha de TratamentoRESUMO
Human T-Lymphotropic Virus type-1 (HTLV-1) is a unique retrovirus associated with both leukemogenesis and a specific neuroinflammatory condition known as HTLV-1-Associated Myelopathy (HAM). Currently, most proposed HAM biomarkers require invasive CSF sampling, which is not suitable for large cohorts or repeated prospective screening. To identify non-invasive biomarkers for incident HAM in a large Brazilian cohort of PLwHTLV-1 (n=615 with 6,673 person-years of clinical follow-up), we selected all plasma samples available at the time of entry in the cohort (between 1997-2019), in which up to 43 cytokines/chemokines and immune mediators were measured. Thus, we selected 110 People Living with HTLV-1 (PLwHTLV-1), of which 68 were neurologically asymptomatic (AS) at baseline and 42 HAM patients. Nine incident HAM cases were identified among 68 AS during follow-up. Using multivariate logistic regression, we found that lower IL-10, IL-4 and female sex were independent predictors of clinical progression to definite HAM (AUROC 0.91), and outperformed previously suggested biomarkers age, sex and proviral load (AUROC 0.77). Moreover, baseline IL-10 significantly predicted proviral load dynamics at follow-up in all PLwHTLV-1. In an exploratory analysis, we identified additional plasma biomarkers which were able to discriminate iHAM from either AS (IL6Rα, IL-27) or HAM (IL-29/IFN-λ1, Osteopontin, and TNFR2). In conclusion, female sex and low anti-inflammatory IL-10 and IL-4 are independent risk factors for incident HAM in PLwHTLV-1,while proviral load is not, in agreement with IL-10 being upstream of proviral load dynamics. Additional candidate biomarkers IL-29/IL-6R/TNFR2 represent plausible therapeutic targets for future clinical trials in HAM patients.
Assuntos
Biomarcadores , Vírus Linfotrópico T Tipo 1 Humano , Interleucina-10 , Carga Viral , Humanos , Feminino , Masculino , Brasil/epidemiologia , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Interleucina-10/sangue , Biomarcadores/sangue , Pessoa de Meia-Idade , Adulto , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/sangue , Infecções por HTLV-I/diagnóstico , Provírus , Estudos de Coortes , Paraparesia Espástica Tropical/sangue , Paraparesia Espástica Tropical/imunologia , Paraparesia Espástica Tropical/virologia , IncidênciaRESUMO
The authors have withdrawn their manuscript due to analytical errors invalidating the main study findings. The authors of this work discovered the errors after submitting the initial version of the preprint. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
RESUMO
The spleen plays a pivotal role in the pathogenesis of visceral leishmaniasis. In severe forms of the disease, the spleen undergoes changes that can compromise its function in surveilling blood-circulating pathogens. In this study, we present an integrated analysis of the structural and gene expression alterations in the spleens of three patients with relapsing visceral leishmaniasis, two of whom were coinfected with HIV. Our findings reveal that the IL6 signaling pathway plays a significant role in the disorganization of the white pulp, while BCL10 and ICOSLG are associated with spleen organization. Patients coinfected with HIV and visceral leishmaniasis exhibited lower splenic CD4+ cell density and reduced expression of genes such as IL15. These effects may contribute to a compromised immune response against L. infantum in coinfected individuals, further impacting the structural organization of the spleen.
Assuntos
Coinfecção , Infecções por HIV , Leishmaniose Visceral , Baço , Humanos , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/genética , Baço/patologia , Infecções por HIV/complicações , Coinfecção/virologia , Masculino , Adulto , Feminino , Linfócitos T CD4-Positivos/imunologia , Leishmania infantum/genética , Expressão GênicaRESUMO
Varicella-zoster virus (VZV) encephalitis and meningitis are potential central nervous system (CNS) complications following primary VZV infection or reactivation. With Type-I interferon (IFN) signalling being an important first line cellular defence mechanism against VZV infection by the peripheral tissues, we here investigated the triggering of innate immune responses in a human neural-like environment. For this, we established and characterised 5-month matured hiPSC-derived neurospheroids (NSPHs) containing neurons and astrocytes. Subsequently, NSPHs were infected with reporter strains of VZV (VZVeGFP-ORF23) or Sendai virus (SeVeGFP), with the latter serving as an immune-activating positive control. Live cell and immunocytochemical analyses demonstrated VZVeGFP-ORF23 infection throughout the NSPHs, while SeVeGFP infection was limited to the outer NSPH border. Next, NanoString digital transcriptomics revealed that SeVeGFP-infected NSPHs activated a clear Type-I IFN response, while this was not the case in VZVeGFP-ORF23-infected NSPHs. Moreover, the latter displayed a strong suppression of genes related to IFN signalling and antigen presentation, as further demonstrated by suppression of IL-6 and CXCL10 production, failure to upregulate Type-I IFN activated anti-viral proteins (Mx1, IFIT2 and ISG15), as well as reduced expression of CD74, a key-protein in the MHC class II antigen presentation pathway. Finally, even though VZVeGFP-ORF23-infection seems to be immunologically ignored in NSPHs, its presence does result in the formation of stress granules upon long-term infection, as well as disruption of cellular integrity within the infected NSPHs. Concluding, in this study we demonstrate that 5-month matured hiPSC-derived NSPHs display functional innate immune reactivity towards SeV infection, and have the capacity to recapitulate the strong immune evasive behaviour towards VZV.
Assuntos
Herpesvirus Humano 3 , Células-Tronco Pluripotentes Induzidas , Humanos , Herpesvirus Humano 3/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/virologia , Imunidade Inata , Neurônios/imunologia , Neurônios/virologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Células Cultivadas , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Evasão da Resposta Imune , Citocinas/metabolismo , Citocinas/imunologia , Astrócitos/imunologia , Astrócitos/virologia , Astrócitos/metabolismo , Transdução de Sinais/imunologiaRESUMO
BACKGROUND: COVID-19-associated pulmonary aspergillosis (CAPA) is a severe superinfection with the fungus Aspergillus affecting patients who are critically ill with COVID-19. The pathophysiology and the role of neutrophil extracellular traps (NETs) in this infection are largely unknown. We aimed to characterise the immune profile, with a focus on neutrophils and NET concentrations, of critically ill patients with COVID-19, with or without CAPA. METHODS: We conducted a single-centre, retrospective, observational study in two patient cohorts, both recruited at University Hospitals Leuven, Belgium. We included adults aged 18 years or older who were admitted to the intensive care unit because of COVID-19 between March 31, 2020, and May 18, 2021, and who were included in the previous Contagious trial (NCT04327570). We investigated the immune cellular landscape of CAPA versus COVID-19 only by performing single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid. Bronchoalveolar lavage immune cell fractions were compared between patients with CAPA and patients with COVID-19 only. Additionally, we determined lower respiratory tract NET concentrations using biochemical assays in patients aged 18 years and older who were admitted to the intensive care unit because of severe COVID-19 between March 15, 2020, and Dec 31, 2021, for whom bronchoalveolar lavage was available in the hospital biobank. Bronchoalveolar lavage NET concentrations were compared between patients with CAPA and patients with COVID-19 only and integrated with existing data on immune mediators in bronchoalveolar lavage and 90-day mortality. FINDINGS: We performed scRNA-seq of bronchoalveolar lavage on 43 samples from 39 patients, of whom 36 patients (30 male and six female; 14 with CAPA) were included in downstream analyses. We performed bronchoalveolar lavage NET analyses in 59 patients (46 male and 13 female), of whom 26 had CAPA. By scRNA-seq, patients with CAPA had significantly lower neutrophil fractions than patients with COVID-19 only (16% vs 33%; p=0·0020). The remaining neutrophils in patients with CAPA preferentially followed a hybrid maturation trajectory characterised by expression of genes linked to antigen presentation, with enhanced transcription of antifungal effector pathways. Patients with CAPA also showed depletion of mucosal-associated invariant T cells, reduced T helper 1 and T helper 17 differentiation, and transcriptional defects in specific aspects of antifungal immunity in macrophages and monocytes. We observed increased formation of NETs in patients with CAPA compared with patients with COVID-19 only (DNA complexed with citrullinated histone H3 median 15 898 ng/mL [IQR 4588-86 419] vs 7062 ng/mL [775-14 088]; p=0·042), thereby explaining decreased neutrophil fractions by scRNA-seq. Low bronchoalveolar lavage NET concentrations were associated with increased 90-day mortality in patients with CAPA. INTERPRETATION: Qualitative and quantitative disturbances in monocyte, macrophage, B-cell, and T-cell populations could predispose patients with severe COVID-19 to develop CAPA. Hybrid neutrophils form a specialised response to CAPA, and an adequate neutrophil response to CAPA is a major determinant for survival in these patients. Therefore, measuring bronchoalveolar lavage NETs could have diagnostic and prognostic value in patients with CAPA. Clinicians should be wary of aspergillosis when using immunomodulatory therapy that might inhibit NETosis to treat patients with severe COVID-19. FUNDING: Research Foundation Flanders, KU Leuven, UZ Leuven, VIB, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, la Caixa Foundation, the Flemish Government, and Horizon 2020.
Assuntos
COVID-19 , Armadilhas Extracelulares , Aspergilose Pulmonar , Adulto , Humanos , Feminino , Masculino , Estudos Retrospectivos , Antifúngicos , Estado Terminal , COVID-19/complicações , Sistema Respiratório , Análise de Sequência de RNARESUMO
(1) Background: The HIV subtype D is generally associated with a faster decline in CD4+ T cell counts, a higher viral load, and a faster progression to AIDS. However, it is still poorly characterized in Brazil. In this study, we used genomics and epidemiological data to investigate the transmission dynamics of HIV subtype D in the state of Bahia, Northeast Brazil. (2) Methods: To achieve this goal, we obtained four novel HIV-1 subtype D partial pol genome sequences using the Sanger method. To understand the emergence of this novel subtype in the state of Bahia, we used phylodynamic analysis on a dataset comprising 3704 pol genome sequences downloaded from the Los Alamos database. (3) Results: Our analysis revealed three branching patterns, indicating multiple introductions of the HIV-1 subtype D in Brazil from the late 1980s to the late 2000s and a single introduction event in the state of Bahia. Our data further suggest that these introductions most likely originated from European, Eastern African, Western African, and Southern African countries. (4) Conclusion: Understanding the distribution of HIV-1 viral strains and their temporal dynamics is crucial for monitoring the real-time evolution of circulating subtypes and recombinant forms, as well as for designing novel diagnostic and vaccination strategies. We advocate for a shift to active surveillance, to ensure adequate preparedness for future epidemics mediated by emerging viral strains.
Assuntos
Soropositividade para HIV , HIV-1 , Humanos , Brasil/epidemiologia , HIV-1/genética , Genômica , Bases de Dados FactuaisRESUMO
Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched InflammatoryHigh /AutophagyLow TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8+ T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.
Assuntos
Melanoma , Humanos , Camundongos , Animais , Melanoma/patologia , Células Endoteliais/metabolismo , Linfócitos T CD8-Positivos , NF-kappa B/metabolismo , Autofagia , Imunoterapia , Microambiente TumoralRESUMO
Coronavirus Disease 2019 (COVID-19) vaccination has resulted in excellent protection against fatal disease, including in older adults. However, risk factors for post-vaccination fatal COVID-19 are largely unknown. We comprehensively studied three large nursing home outbreaks (20-35% fatal cases among residents) by combining severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) aerosol monitoring, whole-genome phylogenetic analysis and immunovirological profiling of nasal mucosa by digital nCounter transcriptomics. Phylogenetic investigations indicated that each outbreak stemmed from a single introduction event, although with different variants (Delta, Gamma and Mu). SARS-CoV-2 was detected in aerosol samples up to 52 d after the initial infection. Combining demographic, immune and viral parameters, the best predictive models for mortality comprised IFNB1 or age, viral ORF7a and ACE2 receptor transcripts. Comparison with published pre-vaccine fatal COVID-19 transcriptomic and genomic signatures uncovered a unique IRF3 low/IRF7 high immune signature in post-vaccine fatal COVID-19 outbreaks. A multi-layered strategy, including environmental sampling, immunomonitoring and early antiviral therapy, should be considered to prevent post-vaccination COVID-19 mortality in nursing homes.
Assuntos
COVID-19 , Humanos , Idoso , Filogenia , COVID-19/epidemiologia , SARS-CoV-2/genética , Casas de Saúde , Vacinação , Surtos de Doenças/prevenção & controleRESUMO
Visceral leishmaniasis is an opportunistic disease in HIV-1 infected individuals, unrecognized as a determining factor for AIDS diagnosis. The growing geographical overlap of HIV-1 and Leishmania infections is an emerging challenge worldwide, as co-infection increases morbidity and mortality for both infections. Here, we determined the prevalence of people living with HIV (PWH) with a previous or ongoing infection by Leishmania infantum and investigated the virological and immunological factors associated with co-infection. We adopted a two-stage cross-sectional cohort (CSC) design (CSC-I, n = 5,346 and CSC-II, n = 317) of treatment-naïve HIV-1-infected individuals in Bahia, Brazil. In CSC-I, samples collected between 1998 and 2013 were used for serological screening for leishmaniasis by an in-house Enzyme-Linked Immunosorbent Assay (ELISA) with SLA (Soluble Leishmania infantum Antigen), resulting in a prevalence of previous or ongoing infection of 16.27%. Next, 317 PWH were prospectively recruited from July 2014 to December 2015 with the collection of sociodemographic and clinical data. Serological validation by two different immunoassays confirmed a prevalence of 15.46 and 8.20% by anti-SLA, and anti-HSP70 serology, respectively, whereas 4.73% were double-positive (DP). Stratification of these 317 individuals in DP and double-negative (DN) revealed a significant reduction of CD4+ counts and CD4+/CD8+ ratios and a tendency of increased viral load in the DP group, as compared to DN. No statistical differences in HIV-1 subtype distribution were observed between the two groups. However, we found a significant increase of CXCL10 (p = 0.0076) and a tendency of increased CXCL9 (p = 0.061) in individuals with DP serology, demonstrating intensified immune activation in this group. These findings were corroborated at the transcriptome level in independent Leishmania- and HIV-1-infected cohorts (Swiss HIV Cohort and Piaui Northeast Brazil Cohort), indicating that CXCL10 transcripts are shared by the IFN-dominated immune activation gene signatures of both pathogens and positively correlated to viral load in untreated PWH. This study demonstrated a high prevalence of PWH with L. infantum seropositivity in Bahia, Brazil, linked to IFN-mediated immune activation and a significant decrease in CD4+ levels. Our results highlight the urgent need to increase awareness and define public health strategies for the management and prevention of HIV-1 and L. infantum co-infection.