Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 595(7869): 713-717, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34192736

RESUMO

After the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting in late summer 2020 that was deadlier and more difficult to contain1. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave2. Here we build a phylogeographical model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the resurgence of COVID-19 in Europe. We inform this model using genomic, mobility and epidemiological data from 10 European countries and estimate that in many countries more than half of the lineages circulating in late summer resulted from new introductions since 15 June 2020. The success in onward transmission of newly introduced lineages was negatively associated with the local incidence of COVID-19 during this period. The pervasive spread of variants in summer 2020 highlights the threat of viral dissemination when restrictions are lifted, and this needs to be carefully considered in strategies to control the current spread of variants that are more transmissible and/or evade immunity. Our findings indicate that more effective and coordinated measures are required to contain the spread through cross-border travel even as vaccination is reducing disease burden.


Assuntos
COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , COVID-19/epidemiologia , COVID-19/prevenção & controle , Europa (Continente)/epidemiologia , Genoma Viral/genética , Humanos , Incidência , Locomoção , Filogenia , Filogeografia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Fatores de Tempo , Viagem/estatística & dados numéricos
2.
EMBO Rep ; 24(9): e57413, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37470283

RESUMO

Aneuploidy is generally considered harmful, but in some microorganisms, it can act as an adaptive mechanism against environmental stress. Here, we use Leishmania-a protozoan parasite with remarkable genome plasticity-to study the early steps of aneuploidy evolution under high drug pressure (using antimony or miltefosine as stressors). By combining single-cell genomics, lineage tracing with cellular barcodes, and longitudinal genome characterization, we reveal that aneuploidy changes under antimony pressure result from polyclonal selection of pre-existing karyotypes, complemented by further and rapid de novo alterations in chromosome copy number along evolution. In the case of miltefosine, early parasite adaptation is associated with independent point mutations in a miltefosine transporter gene, while aneuploidy changes only emerge later, upon exposure to increased drug levels. Therefore, polyclonality and genome plasticity are hallmarks of parasite adaptation, but the scenario of aneuploidy dynamics depends on the nature and strength of the environmental stress as well as on the existence of other pre-adaptive mechanisms.


Assuntos
Leishmania , Humanos , Leishmania/genética , Antimônio , Cromossomos , Aneuploidia
3.
Nucleic Acids Res ; 50(1): 293-305, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34893872

RESUMO

Leishmania, a unicellular eukaryotic parasite, is a unique model for aneuploidy and cellular heterogeneity, along with their potential role in adaptation to environmental stresses. Somy variation within clonal populations was previously explored in a small subset of chromosomes using fluorescence hybridization methods. This phenomenon, termed mosaic aneuploidy (MA), might have important evolutionary and functional implications but remains under-explored due to technological limitations. Here, we applied and validated a high throughput single-cell genome sequencing method to study for the first time the extent and dynamics of whole karyotype heterogeneity in two clonal populations of Leishmania promastigotes representing different stages of MA evolution in vitro. We found that drastic changes in karyotypes quickly emerge in a population stemming from an almost euploid founder cell. This possibly involves polyploidization/hybridization at an early stage of population expansion, followed by assorted ploidy reduction. During further stages of expansion, MA increases by moderate and gradual karyotypic alterations, affecting a defined subset of chromosomes. Our data provide the first complete characterization of MA in Leishmania and pave the way for further functional studies.


Assuntos
Aneuploidia , Evolução Molecular , Leishmania donovani/genética , Mosaicismo , Análise de Célula Única/métodos , Sequenciamento Completo do Genoma/métodos , Genoma de Protozoário
4.
PLoS Genet ; 17(9): e1009820, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570761

RESUMO

Salmonella enterica serovar Typhimurium strain ATCC14028s is commercially available from multiple national type culture collections, and has been widely used since 1960 for quality control of growth media and experiments on fitness ("laboratory evolution"). ATCC14028s has been implicated in multiple cross-contaminations in the laboratory, and has also caused multiple laboratory infections and one known attempt at bioterrorism. According to hierarchical clustering of 3002 core gene sequences, ATCC14028s belongs to HierCC cluster HC20_373 in which most internal branch lengths are only one to three SNPs long. Many natural Typhimurium isolates from humans, domesticated animals and the environment also belong to HC20_373, and their core genomes are almost indistinguishable from those of laboratory strains. These natural isolates have infected humans in Ireland and Taiwan for decades, and are common in the British Isles as well as the Americas. The isolation history of some of the natural isolates confirms the conclusion that they do not represent recent contamination by the laboratory strain, and 10% carry plasmids or bacteriophages which have been acquired in nature by HGT from unrelated bacteria. We propose that ATCC14028s has repeatedly escaped from the laboratory environment into nature via laboratory accidents or infections, but the escaped micro-lineages have only a limited life span. As a result, there is a genetic gap separating HC20_373 from its closest natural relatives due to a divergence between them in the late 19th century followed by repeated extinction events of escaped HC20_373.


Assuntos
Genoma Bacteriano , Laboratórios , Salmonella enterica/genética , Teorema de Bayes , Bioterrorismo , Bases de Dados Genéticas , Evolução Molecular , Funções Verossimilhança , Filogenia , Salmonella enterica/classificação
5.
Emerg Infect Dis ; 29(5): 1076-1078, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081624

RESUMO

We discovered a hybrid Leishmania parasite in Costa Rica that is genetically similar to hybrids from Panama. Genome analyses demonstrated the hybrid is triploid and identified L. braziliensis and L. guyanensis-related strains as parents. Our findings highlight the existence of poorly sampled Leishmania (Viannia) variants infectious to humans.


Assuntos
Leishmania , Leishmaniose Cutânea , Triploidia , Animais , Humanos , Leishmania/genética , Leishmaniose Cutânea/parasitologia , Parasitos , Genômica
6.
Proc Natl Acad Sci U S A ; 117(40): 25159-25168, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958676

RESUMO

The tropical Andes are an important natural laboratory to understand speciation in many taxa. Here we examined the evolutionary history of parasites of the Leishmania braziliensis species complex based on whole-genome sequencing of 67 isolates from 47 localities in Peru. We first show the origin of Andean Leishmania as a clade of near-clonal lineages that diverged from admixed Amazonian ancestors, accompanied by a significant reduction in genome diversity and large structural variations implicated in host-parasite interactions. Within the Andean species, patterns of population structure were strongly associated with biogeographical origin. Molecular clock and ecological niche modeling suggested that the history of diversification of the Andean lineages is limited to the Late Pleistocene and intimately associated with habitat contractions driven by climate change. These results suggest that changes in forestation over the past 150,000 y have influenced speciation and diversity of these Neotropical parasites. Second, genome-scale analyses provided evidence of meiotic-like recombination between Andean and Amazonian Leishmania species, resulting in full-genome hybrids. The mitochondrial genome of these hybrids consisted of homogeneous uniparental maxicircles, but minicircles originated from both parental species. We further show that mitochondrial minicircles-but not maxicircles-show a similar evolutionary pattern to the nuclear genome, suggesting that compatibility between nuclear-encoded mitochondrial genes and minicircle-encoded guide RNA genes is essential to maintain efficient respiration. By comparing full nuclear and mitochondrial genome ancestries, our data expand our appreciation on the genetic consequences of diversification and hybridization in parasitic protozoa.


Assuntos
Genoma Mitocondrial/genética , Interações Hospedeiro-Parasita/genética , Leishmania braziliensis/genética , Leishmaniose Cutânea/genética , Ecossistema , Florestas , Especiação Genética , Humanos , Leishmania braziliensis/patogenicidade , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/parasitologia , Peru/epidemiologia , Filogeografia
7.
BMC Bioinformatics ; 22(1): 468, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583651

RESUMO

BACKGROUND: The advent of population-scale genome projects has revolutionized our biological understanding of parasitic protozoa. However, while hundreds to thousands of nuclear genomes of parasitic protozoa have been generated and analyzed, information about the diversity, structure and evolution of their mitochondrial genomes remains fragmentary, mainly because of their extraordinary complexity. Indeed, unicellular flagellates of the order Kinetoplastida contain structurally the most complex mitochondrial genome of all eukaryotes, organized as a giant network of homogeneous maxicircles and heterogeneous minicircles. We recently developed KOMICS, an analysis toolkit that automates the assembly and circularization of the mitochondrial genomes of Kinetoplastid parasites. While this tool overcomes the limitation of extracting mitochondrial assemblies from Next-Generation Sequencing datasets, interpreting and visualizing the genetic (dis)similarity within and between samples remains a time-consuming process. RESULTS: Here, we present a new analysis toolkit-rKOMICS-to streamline the analyses of minicircle sequence diversity in population-scale genome projects. rKOMICS is a user-friendly R package that has simple installation requirements and that is applicable to all 27 trypanosomatid genera. Once minicircle sequence alignments are generated, rKOMICS allows to examine, summarize and visualize minicircle sequence diversity within and between samples through the analyses of minicircle sequence clusters. We showcase the functionalities of the (r)KOMICS tool suite using a whole-genome sequencing dataset from a recently published study on the history of diversification of the Leishmania braziliensis species complex in Peru. Analyses of population diversity and structure highlighted differences in minicircle sequence richness and composition between Leishmania subspecies, and between subpopulations within subspecies. CONCLUSION: The rKOMICS package establishes a critical framework to manipulate, explore and extract biologically relevant information from mitochondrial minicircle assemblies in tens to hundreds of samples simultaneously and efficiently. This should facilitate research that aims to develop new molecular markers for identifying species-specific minicircles, or to study the ancestry of parasites for complementary insights into their evolutionary history.


Assuntos
Genoma Mitocondrial , Leishmania , DNA de Cinetoplasto , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Leishmania/genética , Alinhamento de Sequência
8.
Mol Ecol ; 27(17): 3425-3431, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30142241

RESUMO

We recently published the first genomic diversity study of Trypanosoma congolense, a major aetiological agent of Animal African Trypanosomiasis. We demonstrated striking levels of SNP and indel diversity in the Eastern province of Zambia as a consequence of hybridization between divergent trypanosome lineages. We concluded that these and earlier findings in T. congolense challenge the predominant clonal evolution (PCE) model. In a recent comment, Tibayrenc and Ayala claim that there are many features in T. congolense supporting their theory of clonality. While we can follow the reasoning of the authors, we also identify major limitations in their theory and interpretations that resulted in incorrect conclusions. First, we argue that each T. congolense subgroup should be analysed independently as they may represent different (sub)species rather than "near-clades". Second, the authors neglect major findings of two robust population genetic studies on Savannah T. congolense that provide clear evidence of frequent recombination. Third, we reveal additional events of introgressive hybridization in T. congolense by analysing the maxicircle coding region using next-generation sequencing analyses. At last, we pinpoint two important misinterpretations by the authors and show that there are no spatially and temporally widespread clones in T. congolense. We stand by our earlier conclusions that the clonal framework is unlikely to accurately model the population structure of T. congolense. Other theoretical frameworks such as Maynard Smith's epidemic model may better represent the complex ancestry seen in T. congolense, where clones delimited in space and time arise against a background of recombination.


Assuntos
Trypanosoma congolense , Tripanossomíase Africana , Animais , Evolução Clonal , Genômica , Zâmbia
9.
Parasitology ; 145(5): 634-645, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29667570

RESUMO

Hybridization events between Schistosoma species (Digenea, Platyhelminthes) are reported with increasing frequency, largely due to improved access to molecular tools. Nevertheless, little is known about the distribution and frequency of hybrid schistosomes in nature. Screening for hybrids on a large scale is complicated by the need for nuclear and mitochondrial sequence information, precluding a 'simple' barcoding approach. Here we aimed to determine and understand the spatiotemporal distribution of Schistosoma haematobium × Schistosoma bovis hybrids in the Senegal River Basin. From ten villages, distributed over the four main water basins, we genotyped a total of 1236 schistosome larvae collected from human urine samples using a partial mitochondrial cox1 fragment; a subset of 268 parasites was also genotyped using ITS rDNA. Hybrid schistosomes were unevenly distributed, with substantially higher numbers in villages bordering Lac de Guiers than in villages from the Lampsar River and the Middle Valley of the Senegal River. The frequency of hybrids per village was not linked with the prevalence of urinary schistosomiasis in that village. However, we did find a significant positive association between the frequency of hybrids per village and the prevalence of Schistosoma mansoni. We discuss the potential consequences of adopting a barcoding approach when studying hybrids in nature.


Assuntos
Código de Barras de DNA Taxonômico , Hibridização Genética , Schistosoma haematobium/genética , Schistosoma/genética , Animais , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/genética , Genótipo , Técnicas de Genotipagem , Humanos , Prevalência , Schistosoma/classificação , Schistosoma haematobium/classificação , Esquistossomose/parasitologia , Esquistossomose/urina , Senegal
10.
Mol Ecol ; 26(23): 6524-6538, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28752916

RESUMO

Hybrid populations and introgressive hybridization remain poorly documented in pathogenic micro-organisms, as such that genetic exchange has been argued to play a minor role in their evolution. Recent work demonstrated the existence of hybrid microsatellite profiles in Trypanosoma congolense, a parasitic protozoan with detrimental effects on livestock productivity in sub-Saharan Africa. Here, we present the first population genomic study of T. congolense, revealing a remarkable number of single nucleotide polymorphisms (SNPs), small insertions/deletions (indels) and gene deletions among 56 parasite genomes from ten African countries. One group of parasites from Zambia was particularly diverse, displaying a substantial number of heterozygous SNP and indel sites compared to T. congolense parasites from the nine other sub-Saharan countries. Genomewide 5-kb phylogenetic analyses based on phased SNP data revealed that these parasites were the product of hybridization between phylogenetically distinct T. congolense lineages. Other parasites within the same region in Zambia presented a mosaic of haplotypic ancestry and genetic variability, indicating that hybrid parasites persisted and recombined beyond the initial hybridization event. Our observations challenge traditional views of trypanosome population biology and encourage future research on the role of hybridization in spreading genes for drug resistance, pathogenicity and virulence.


Assuntos
Genética Populacional , Hibridização Genética , Trypanosoma congolense/genética , África Subsaariana , Animais , Variações do Número de Cópias de DNA , Deleção de Genes , Frequência do Gene , Genoma de Protozoário , Haplótipos , Mutação INDEL , Repetições de Microssatélites , Filogenia , Polimorfismo de Nucleotídeo Único , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária , Zâmbia
11.
Sci Rep ; 14(1): 5578, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448494

RESUMO

Trypanosoma cruzi causes Chagas disease and has a unique extranuclear genome enclosed in a structure called the kinetoplast, which contains circular genomes known as maxi- and minicircles. While the structure and function of maxicircles are well-understood, many aspects of minicircles remain to be discovered. Here, we performed a high-throughput analysis of the minicirculome (mcDNA) in 50 clones isolated from Colombia's diverse T. cruzi I populations. Results indicate that mcDNA comprises four diverse subpopulations with different structures, lengths, and numbers of interspersed semi-conserved (previously termed ultra-conserved regions mHCV) and hypervariable (mHVPs) regions. Analysis of mcDNA ancestry and inter-clone differentiation indicates the interbreeding of minicircle sequence classes is placed along diverse strains and hosts. These results support evidence of the multiclonal dynamics and random bi-parental segregation. Finally, we disclosed the guide RNA repertoire encoded by mcDNA at a clonal scale, and several attributes of its abundance and function are discussed.


Assuntos
Doença de Chagas , Segregação Social , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Mitocôndrias
12.
Appl Environ Microbiol ; 79(8): 2534-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23396342

RESUMO

In total, 245 Cryptosporidium parvum specimens obtained from calves in 205 Irish herds between 2003 and 2005 were subtyped by sequencing the glycoprotein gene gp60 and performing multilocus analysis of seven markers. The transmission dynamics of C. parvum and the influence of temporal, spatial, parasitic, and host-related factors on the parasite (sub)populations were studied. The relationship of those factors to the risk of cryptosporidiosis was also investigated using results from 1,368 fecal specimens submitted to the veterinary laboratories for routine diagnosis during 2005. The prevalence was greatest in the northwest and midwest of the country and on farms that bought in calves. The panmixia (random mating) detected in the C. parvum population may relate to its high prevalence, the cattle density, and the frequent movement of cattle. However, local variations in these factors were reflected in the C. parvum subpopulations. This study demonstrated the importance of biosecurity in the control of bovine cryptosporidiosis (e.g., isolation and testing of calves before introduction into a herd). Furthermore, the zoonotic risk of C. parvum was confirmed, as most specimens possessed GP60 and MS1 subtypes previously described in humans.


Assuntos
Doenças dos Bovinos/parasitologia , Criptosporidiose/veterinária , Cryptosporidium parvum/genética , Cryptosporidium parvum/fisiologia , DNA de Protozoário/genética , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium parvum/classificação , Cryptosporidium parvum/isolamento & purificação , DNA de Protozoário/química , Fezes/parasitologia , Glicoproteínas/genética , Irlanda , Dados de Sequência Molecular , Tipagem Molecular , Prevalência , Proteínas de Protozoários/genética , Análise de Sequência de DNA
13.
Front Cell Infect Microbiol ; 13: 1147998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153154

RESUMO

Leishmania aethiopica is a zoonotic Old World parasite transmitted by Phlebotomine sand flies and causing cutaneous leishmaniasis in Ethiopia and Kenya. Despite a range of clinical manifestations and a high prevalence of treatment failure, L. aethiopica is one of the most neglected species of the Leishmania genus in terms of scientific attention. Here, we explored the genome diversity of L. aethiopica by analyzing the genomes of twenty isolates from Ethiopia. Phylogenomic analyses identified two strains as interspecific hybrids involving L. aethiopica as one parent and L. donovani and L. tropica respectively as the other parent. High levels of genome-wide heterozygosity suggest that these two hybrids are equivalent to F1 progeny that propagated mitotically since the initial hybridization event. Analyses of allelic read depths further revealed that the L. aethiopica - L. tropica hybrid was diploid and the L. aethiopica - L. donovani hybrid was triploid, as has been described for other interspecific Leishmania hybrids. When focusing on L. aethiopica, we show that this species is genetically highly diverse and consists of both asexually evolving strains and groups of recombining parasites. A remarkable observation is that some L. aethiopica strains showed an extensive loss of heterozygosity across large regions of the nuclear genome, which likely arose from gene conversion/mitotic recombination. Hence, our prospection of L. aethiopica genomics revealed new insights into the genomic consequences of both meiotic and mitotic recombination in Leishmania.


Assuntos
Leishmania , Leishmaniose Cutânea , Psychodidae , Animais , Leishmania/genética , Leishmaniose Cutânea/parasitologia , Psychodidae/parasitologia , Filogenia , Hibridização de Ácido Nucleico
14.
Nat Commun ; 14(1): 8343, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102141

RESUMO

Viruses are the most abundant biological entities on Earth and play a significant role in the evolution of many organisms and ecosystems. In pathogenic protozoa, the presence of viruses has been linked to an increased risk of treatment failure and severe clinical outcome. Here, we studied the molecular epidemiology of the zoonotic disease cutaneous leishmaniasis in Peru and Bolivia through a joint evolutionary analysis of Leishmania braziliensis and their dsRNA Leishmania virus 1. We show that parasite populations circulate in tropical rainforests and are associated with single viral lineages that appear in low prevalence. In contrast, groups of hybrid parasites are geographically and ecologically more dispersed and associated with an increased prevalence, diversity and spread of viruses. Our results suggest that parasite gene flow and hybridization increased the frequency of parasite-virus symbioses, a process that may change the epidemiology of leishmaniasis in the region.


Assuntos
Leishmania braziliensis , Leishmania , Leishmaniose Cutânea , Humanos , Ecossistema , Leishmaniose Cutânea/parasitologia , Leishmania braziliensis/genética , Leishmania/genética , Peru/epidemiologia
15.
Viruses ; 15(6)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37376536

RESUMO

The Americas, particularly Brazil, were greatly impacted by the widespread Zika virus (ZIKV) outbreak in 2015 and 2016. Efforts were made to implement genomic surveillance of ZIKV as part of the public health responses. The accuracy of spatiotemporal reconstructions of the epidemic spread relies on the unbiased sampling of the transmission process. In the early stages of the outbreak, we recruited patients exhibiting clinical symptoms of arbovirus-like infection from Salvador and Campo Formoso, Bahia, in Northeast Brazil. Between May 2015 and June 2016, we identified 21 cases of acute ZIKV infection and subsequently recovered 14 near full-length sequences using the amplicon tiling multiplex approach with nanopore sequencing. We performed a time-calibrated discrete phylogeographic analysis to trace the spread and migration history of the ZIKV. Our phylogenetic analysis supports a consistent relationship between ZIKV migration from Northeast to Southeast Brazil and its subsequent dissemination beyond Brazil. Additionally, our analysis provides insights into the migration of ZIKV from Brazil to Haiti and the role Brazil played in the spread of ZIKV to other countries, such as Singapore, the USA, and the Dominican Republic. The data generated by this study enhances our understanding of ZIKV dynamics and supports the existing knowledge, which can aid in future surveillance efforts against the virus.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Brasil/epidemiologia , Filogenia , América/epidemiologia
16.
Mol Ecol ; 21(14): 3458-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22646231

RESUMO

Quantifying the contribution of the various processes that influence population genetic structure is important, but difficult. One of the reasons is that no single measure appropriately quantifies all aspects of genetic structure. An increasing number of studies is analysing population structure using the statistic D, which measures genetic differentiation, next to G(ST) , which quantifies the standardized variance in allele frequencies among populations. Few studies have evaluated which statistic is most appropriate in particular situations. In this study, we evaluated which index is more suitable in quantifying postglacial divergence between three-spined stickleback (Gasterosteus aculeatus) populations from Western Europe. Population structure on this short timescale (10 000 generations) is probably shaped by colonization history, followed by migration and drift. Using microsatellite markers and anticipating that D and G(ST) might have different capacities to reveal these processes, we evaluated population structure at two levels: (i) between lowland and upland populations, aiming to infer historical processes; and (ii) among upland populations, aiming to quantify contemporary processes. In the first case, only D revealed clear clusters of populations, putatively indicative of population ancestry. In the second case, only G(ST) was indicative for the balance between migration and drift. Simulations of colonization and subsequent divergence in a hierarchical stepping stone model confirmed this discrepancy, which becomes particularly strong for markers with moderate to high mutation rates. We conclude that on short timescales, and across strong clines in population size and connectivity, D is useful to infer colonization history, whereas G(ST) is sensitive to more recent demographic events.


Assuntos
Deriva Genética , Genética Populacional , Taxa de Mutação , Smegmamorpha/genética , Animais , Simulação por Computador , Europa (Continente) , Frequência do Gene , Técnicas de Genotipagem , Repetições de Microssatélites , Modelos Genéticos , Análise de Sequência de DNA , Fatores de Tempo
17.
Acta Parasitol ; 67(3): 1246-1253, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35657485

RESUMO

PURPOSE: Surra is an economically important livestock disease in many low- and middle-income countries, including those of Northern Africa. The disease is caused by the biting fly-transmitted subspecies Trypanosoma brucei evansi, which is very closely related to the tsetse-transmitted subspecies T. b. brucei and the sexually transmitted subspecies T. b. equiperdum. At least two phylogenetically distinct groups of T. b. evansi can be distinguished, called type A and type B. These evolved from T. b. brucei independently. The close relationships between the T. brucei subspecies and the multiple evolutionary origins of T. b. evansi pose diagnostic challenges. METHODS: Here we use previously established and newly developed PCR assays based on nuclear and mitochondrial genetic markers to type the causative agent of recent trypanosome infections of camels in Southern Algeria. RESULTS/CONCLUSION: We confirm that these infections have been caused by T. b. evansi type A. We also report a newly designed PCR assay specific for T. b. evansi type A that we expect will be of diagnostic use for the community.


Assuntos
Trypanosoma , Tripanossomíase , Argélia/epidemiologia , Animais , Camelus , Reação em Cadeia da Polimerase , Trypanosoma/genética , Tripanossomíase/diagnóstico , Tripanossomíase/epidemiologia , Tripanossomíase/veterinária
18.
NAR Genom Bioinform ; 4(4): lqac081, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285287

RESUMO

The World Health Organization targeted Trypanosoma brucei gambiense (Tbg) human African trypanosomiasis for elimination of transmission by 2030. Sensitive molecular markers that specifically detect Tbg type 1 (Tbg1) parasites will be important tools to assist in reaching this goal. We aim at improving molecular diagnosis of Tbg1 infections by targeting the abundant mitochondrial minicircles within the kinetoplast of these parasites. Using Next-Generation Sequencing of total cellular DNA extracts, we assembled and annotated the kinetoplast genome and investigated minicircle sequence diversity in 38 animal- and human-infective trypanosome strains. Computational analyses recognized a total of 241 Minicircle Sequence Classes as Tbg1-specific, of which three were shared by the 18 studied Tbg1 strains. We developed a minicircle-based assay that is applicable on animals and as specific as the TgsGP-based assay, the current golden standard for molecular detection of Tbg1. The median copy number of the targeted minicircle was equal to eight, suggesting our minicircle-based assay may be used for the sensitive detection of Tbg1 parasites. Annotation of the targeted minicircle sequence indicated that it encodes genes essential for the survival of the parasite and will thus likely be preserved in natural Tbg1 populations, the latter ensuring the reliability of our novel diagnostic assay.

19.
Commun Med (Lond) ; 2: 65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35698660

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of infections and fatalities globally since its emergence in late 2019. The virus was first detected in Finland in January 2020, after which it rapidly spread among the populace in spring. However, compared to other European nations, Finland has had a low incidence of SARS-CoV-2. To gain insight into the origins and turnover of SARS-CoV-2 lineages circulating in Finland in 2020, we investigated the phylogeographic and -dynamic history of the virus. Methods: The origins of SARS-CoV-2 introductions were inferred via Travel-aware Bayesian time-measured phylogeographic analyses. Sequences for the analyses included virus genomes belonging to the B.1 lineage and with the D614G mutation from countries of likely origin, which were determined utilizing Google mobility data. We collected all available sequences from spring and fall peaks to study lineage dynamics. Results: We observed rapid turnover among Finnish lineages during this period. Clade 20C became the most prevalent among sequenced cases and was replaced by other strains in fall 2020. Bayesian phylogeographic reconstructions suggested 42 independent introductions into Finland during spring 2020, mainly from Italy, Austria, and Spain. Conclusions: A single introduction from Spain might have seeded one-third of cases in Finland during spring in 2020. The investigations of the original introductions of SARS-CoV-2 to Finland during the early stages of the pandemic and of the subsequent lineage dynamics could be utilized to assess the role of transboundary movements and the effects of early intervention and public health measures.

20.
Res Sq ; 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33594355

RESUMO

Following the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting late summer that was deadlier and more difficult to contain. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave. Here, we build a phylogeographic model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the COVID-19 resurgence in Europe. We inform this model using genomic, mobility and epidemiological data from 10 West European countries and estimate that in many countries more than 50% of the lineages circulating in late summer resulted from new introductions since June 15th. The success in onwards transmission of these lineages is predicted by SARS-CoV-2 incidence during this period. Relatively early introductions from Spain into the United Kingdom contributed to the successful spread of the 20A.EU1/B.1.177 variant. The pervasive spread of variants that have not been associated with an advantage in transmissibility highlights the threat of novel variants of concern that emerged more recently and have been disseminated by holiday travel. Our findings indicate that more effective and coordinated measures are required to contain spread through cross-border travel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA