Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Heliyon ; 8(5): e09534, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35663765

RESUMO

To broaden the scope of contaminants monitored in human-impacted riverine systems, water, sediment, and treated wastewater effluent were analyzed using receptor-based cell assays that provide an integrated response to chemicals based on their mode of biological activity. Samples were collected from three California (USA) watersheds with varying degrees of urbanization and discharge from municipal wastewater treatment plants (WWTPs). To complement cell assay results, samples were also analyzed for a suite of contaminants of emerging concern (CECs) using gas and liquid chromatography-mass spectrometry (GC- and LC-MS/MS). For most water and sediment samples, bioassay equivalent concentrations for estrogen and glucocorticoid receptor assays (ER- and GR-BEQs, respectively) were near or below reporting limits. Measured CEC concentrations compared to monitoring trigger values established by a science advisory panel indicated minimal to moderate concern in water but suggested that select pesticides (pyrethroids and fipronil) had accumulated to levels of greater concern in river sediments. Integrating robust, standardized bioanalytical tools such as the ER and GR assays utilized in this study into existing chemical-specific monitoring and assessment efforts will enhance future CEC monitoring efforts in impacted riverine systems and coastal watersheds.

2.
Chemosphere ; 212: 182-192, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30144679

RESUMO

Surface waters are becoming increasingly influenced by wastewater effluents due to drought conditions, growing populations, and urbanization. These effluents contain mixtures of trace organic compounds (TOrCs), including bioactive constituents, which are not fully attenuated by conventional wastewater treatment systems. This study investigated the occurrence of glucocorticoid receptor (GR), aryl hydrocarbon receptor (AhR), and estrogen receptor (ER) activity, as well as the overall toxicity to bacteria (BLT-Screen), in the effluent of two wastewater reclamation facilities (WRF) and downstream of the Lower Santa Cruz River, Pima County, Arizona USA, which is dominated by the WRF effluents. The GR, AhR, and ER activities and toxicity to bacteria were determined by in vitro bioassays during four seasons. Bioassay results showed the highest activities at the wastewater outfalls, with activities decreasing downstream of the river. Biological equivalent concentrations ranged from 9 to 170 ng/L dexamethasone-equivalents (DexEQ), 0.1-0.8 ng/L 2,3,7,8-tetrachlorodibenzo-p-dioxin-equivalents (TCDDEQ), and <0.005-0.8 ng/L estradiol equivalents (EEQ) for GR-, AhR- and ER-mediated activity, respectively. This level of biological activity at times exceeded the relevant effects-based trigger value for environmental effects, indicating a potential risk to the receiving environment. Toxicity to bacteria was low at all sites, well below the trigger value of 1.0 TUIC20, which represents an undiluted water sample causing 20% toxicity in the assay. The potential inducing glucocorticoid agonists were further analysed by liquid chromatography coupled to tandem mass spectrometry. Analytical results reveal triamcinolone acetonide as the most abundant glucocorticoid with concentrations up to 38 ng/L. Similar results for DexEQ concentrations calculated from both chemical and bioassay data indicate a successful mass balance for glucocorticoids. This mass balance illustrated lower DexEQ during summer months, which could be due to an increased attenuation from photodegradation.


Assuntos
Bactérias/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/metabolismo , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Bioensaio/métodos , Monitoramento Ambiental , Regulação da Expressão Gênica/efeitos dos fármacos
3.
Environ Toxicol Chem ; 37(3): 884-892, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29091346

RESUMO

High-throughput cell assays that detect and integrate the response of multiple chemicals acting via a common mode of action have the potential to enhance current environmental monitoring practices. Establishing the linkage between in vitro and in vivo responses is key to demonstrating that in vitro cell assays can be predictive of ecologically relevant outcomes. The present study investigated the potency of 17ß-estradiol (E2), estrone (E1), nonylphenol (NP), and treated wastewater effluent using the readily available GeneBLAzer® estrogen receptor transactivation assay and 2 life stages of the inland silverside (Menidia beryllina). In vitro estrogenic potencies were ranked as follows: E2 > E1 >> NP. All 3 model estrogens induced vitellogenin and choriogenin expression in a dose-dependent manner in larvae and juveniles. However, apical effects were only found for E2 and E1 exposures of juveniles, which resulted in female-skewed sex ratios. Wastewater effluent samples exhibiting low in vitro estrogenicity (below the 10% effective concentration [EC10]), did not cause significant changes in M. beryllina. Significant induction of estrogen-responsive genes was observed at concentrations 6 to 26 times higher than in vitro responses. Gonadal feminization occurred at concentrations at least 19 to 26 times higher than the in vitro responses. These findings indicated that in vitro cell assays were more sensitive than the fish assays, making it possible to develop in vitro effect thresholds protective of aquatic organisms. Environ Toxicol Chem 2018;37:884-892. © 2017 SETAC.


Assuntos
Monitoramento Ambiental , Estrogênios/efeitos adversos , Peixes/metabolismo , Animais , Estrona/análise , Feminino , Peixes/genética , Regulação da Expressão Gênica , Masculino , Especificidade de Órgãos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Razão de Masculinidade , Poluentes Químicos da Água/efeitos adversos
4.
Chemosphere ; 144: 1780-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26524147

RESUMO

The presence of perfluorocarboxylic acids (PFCAs) in source and finished drinking waters is a concern with studies showing bioaccumulation and adverse toxicological effects in wildlife and potentially humans. Per/Polyfluoroalkyl substances (PFAS) such as fluorotelomer alcohols have been identified as precursors for PFCAs in biological pathways. In this study, we investigated the fate of 6:2 and 8:2 homologues of the fluorotelomer unsaturated carboxylic acids (FTUCAs) during advanced oxidation process (AOPs). Results showed 6:2 FTUCA and 8:2 FTUCA transformed into 6-C PFCA (PFHxA) and 8-C PFCA (PFOA) respectively with very little other PFCA formation for all AOPs. The degradation of 6:2 FTUCA and 8:2 FTUCA was greater in the GW compared to SW for the ozone processes but similar for UV/H2O2. The formation of n-C PFCA followed O3>O3/H2O2 at same dose and UV/H2O2 had much lower formation at the doses tested. Non-targeted analysis with the LC-MS-qTOF indicated the production of other PFCAs which contribute to the total mass balance, although no intermediate product was discovered indicating a rapid and direct transformation from the FTUCAs to the PFCAs and/or significant volatilization of intermediates. With the use of AOPs essential to water reuse treatment schemes, this work raises concerns over the risk of potential formation of PFCAs in the treatment and their adverse health effects in finished drinking water.


Assuntos
Ácidos Carboxílicos/química , Fluorocarbonos/química , Oxidantes/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cromatografia Líquida , Água Subterrânea/química , Peróxido de Hidrogênio/química , Espectrometria de Massas , Oxirredução , Ozônio/química , Rios/química
5.
J Vis Exp ; (118)2016 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28060336

RESUMO

In vitro transactivation bioassays have shown promise as water quality monitoring tools, however their adoption and widespread application has been hindered partly due to a lack of standardized methods and availability of robust, user-friendly technology. In this study, commercially available, division-arrested cell lines were employed to quantitatively screen for endocrine activity of chemicals present in water samples of interest to environmental quality professionals. A single, standardized protocol that included comprehensive quality assurance/quality control (QA/QC) checks was developed for Estrogen and Glucocorticoid Receptor activity (ER and GR, respectively) using a cell-based Fluorescence Resonance Energy Transfer (FRET) assay. Samples of treated municipal wastewater effluent and surface water from freshwater systems in California (USA), were extracted using solid phase extraction and analyzed for endocrine activity using the standardized protocol. Background and dose-response for endpoint-specific reference chemicals met QA/QC guidelines deemed necessary for reliable measurement. The bioassay screening response for surface water samples was largely not detectable. In contrast, effluent samples from secondary treatment plants had the highest measurable activity, with estimated bioassay equivalent concentrations (BEQs) up to 392 ng dexamethasone/L for GR and 17 ng 17ß-estradiol/L for ER. The bioassay response for a tertiary effluent sample was lower than that measured for secondary effluents, indicating a lower residual of endocrine active chemicals after advanced treatment. This protocol showed that in vitro transactivation bioassays that utilize commercially available, division-arrested cell "kits", can be adapted to screen for endocrine activity in water.


Assuntos
Bioensaio , Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Ativação Transcricional , Poluentes Químicos da Água/análise , Linhagem Celular , Humanos , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/metabolismo , Águas Residuárias/análise , Água
6.
MEDICC Rev ; 16(2): 31-8, 2014 04.
Artigo em Inglês | MEDLINE | ID: mdl-24878647

RESUMO

INTRODUCTION: Chronic kidney disease of unknown etiology is occurring in various geographic areas worldwide. Cases lack typical risk factors associated with chronic kidney disease, such as diabetes and hypertension. It is epidemic in El Salvador, Central America, where it is diagnosed with increasing frequency in young, otherwise-healthy male farmworkers. Suspected causes include agrochemical use (especially in sugarcane fields), physical heat stress, and heavy metal exposure. OBJECTIVE: To evaluate the geographic relationship between unspecified chronic kidney disease (unCKD) and nondiabetic chronic renal failure (ndESRD) hospital admissions in El Salvador with the proximity to cultivated crops and ambient temperatures. METHODS: Data on unCKD and ndESRD were compared with environmental variables, crop area cultivated (indicator of agrochemical use) and high ambient temperatures. Using geographically weighted regression analysis, two model sets were created using reported municipal hospital admission rates are per thousand population for unCKD 2006-2010 and rates of ndESRD 2005-2010 [corrected]. These were assessed against local percent of land cultivated by crop (sugarcane, coffee, corn, cotton, sorghum, and beans) and mean maximum ambient temperature, with Moran's indices determining data clustering. Two-dimensional geographic models illustrated parameter spatial distribution. RESULTS: Bivariate geographically weighted regressions showed statistically significant correlations between percent area of sugarcane, corn, cotton, coffee, and bean cultivation, as well as mean maximum ambient temperature with both unCKD and ndESRD hospital admission rates. Percent area of sugarcane cultivation had greatest statistical weight (p ≤ 0.001; Rp2 = 0.77 for unCKD). The most statistically significant multivariate geographically weighted regression model for unCKD included percent area of sugarcane, cotton and corn cultivation (p ≤ 0.001; Rp2 = 0.80), while, for ndESRD, it included the percent area of sugarcane, corn, cotton and coffee cultivation (Rp2 = 0.52). Univariate unCKD and ndESRD Moran's I (0.20 and 0.33, respectively) indicated some degree of clustering. Ambient temperature did not improve multivariate geographically-weighted regression models for unCKD or ndESRD. Local bivariate Moran's indices with relatively high positive values and statistical significance (0.3-1.0, p ≤0.05) indicated positive clustering between unCKD hospital admission rates and percent area of sugarcane as well as cotton cultivation. The greatest positive response for clustering values did not consistently plot near the highest temperatures; there were some positive clusters in regions of lower temperatures. Clusters of ndESRD were also observed, some in areas of relatively low chronic kidney disease incidence in western El Salvador. CONCLUSIONS: High temperatures do not appear to strongly influence occurrence of unCKDu proxies. CKDu in El Salvador may arise from proximity to agriculture to which agrochemicals are applied, especially in sugarcane cultivation. The findings of this preliminary ecological study suggest that more research is needed to assess and quantify presence of specific agrochemicals in high-CKDu areas.


Assuntos
Agroquímicos/intoxicação , Produtos Agrícolas , Insuficiência Renal Crônica/epidemiologia , Análise por Conglomerados , El Salvador/epidemiologia , Exposição Ambiental , Feminino , Geografia , Temperatura Alta/efeitos adversos , Humanos , Masculino , Admissão do Paciente/estatística & dados numéricos , Análise de Regressão , Insuficiência Renal Crônica/etiologia , Fatores de Risco , Saccharum , Distribuição por Sexo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA