Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 11(2): e1004645, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25658098

RESUMO

The identification of Mycobacterium tuberculosis genes necessary for persistence in vivo provides insight into bacterial biology as well as host defense strategies. We show that disruption of M. tuberculosis membrane protein PerM (Rv0955) resulted in an IFN-γ-dependent persistence defect in chronic mouse infection despite the mutant's near normal growth during acute infection. The perM mutant required increased magnesium for replication and survival; incubation in low magnesium media resulted in cell elongation and lysis. Transcriptome analysis of the perM mutant grown in reduced magnesium revealed upregulation of cell division and cell wall biosynthesis genes, and live cell imaging showed PerM accumulation at the division septa in M. smegmatis. The mutant was acutely sensitive to ß-lactam antibiotics, including specific inhibitors of cell division-associated peptidoglycan transpeptidase FtsI. Together, these data implicate PerM as a novel player in mycobacterial cell division and pathogenesis, and are consistent with the hypothesis that immune activation deprives M. tuberculosis of magnesium.


Assuntos
Proteínas de Bactérias/metabolismo , Magnésio/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/metabolismo , Animais , Proteínas de Bactérias/imunologia , Divisão Celular/fisiologia , Modelos Animais de Doenças , Feminino , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia
2.
J Bacteriol ; 191(2): 625-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19011036

RESUMO

Mycobacterium tuberculosis can persist in macrophage phagosomes that acidify to a pH of approximately 4.5 after activation of the macrophage with gamma interferon. How the bacterium resists the low pH of the acidified phagosome is incompletely understood. A screen of 10,100 M. tuberculosis transposon mutants for mutants hypersensitive to pH 4.5 led to the discovery of 21 genes whose disruption attenuated survival of M. tuberculosis at a low pH (41). Here, we show that acid-sensitive M. tuberculosis mutants with transposon insertions in Rv2136c, Rv2224c, ponA2, and lysX were hypersensitive to antibiotics, sodium dodecyl sulfate, heat shock, and reactive oxygen and nitrogen intermediates, indicating that acid resistance can be associated with protection against other forms of stress. The Rv2136c mutant was impaired in intrabacterial pH homeostasis and unable to maintain a neutral intrabacterial pH in activated macrophages. The Rv2136c, Rv2224c, and ponA2 mutants were attenuated in mice, with the Rv2136c mutant displaying the most severe level of attenuation. Pathways utilized by M. tuberculosis for acid resistance and intrabacterial pH maintenance are potential targets for chemotherapy.


Assuntos
Ácidos/metabolismo , Parede Celular/metabolismo , Mutação , Mycobacterium tuberculosis/metabolismo , Estresse Oxidativo , Tuberculose/microbiologia , Ácidos/farmacologia , Animais , Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Células Cultivadas , Feminino , Interações Hospedeiro-Patógeno , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Mutagênese Insercional , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética
4.
Nat Med ; 14(8): 849-54, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18641659

RESUMO

Acidification of the phagosome is considered to be a major mechanism used by macrophages against bacteria, including Mycobacterium tuberculosis (Mtb). Mtb blocks phagosome acidification, but interferon-gamma (IFN-gamma) restores acidification and confers antimycobacterial activity. Nonetheless, it remains unclear whether acid kills Mtb, whether the intrabacterial pH of any pathogen falls when it is in the phagosome and whether acid resistance is required for mycobacterial virulence. In vitro at pH 4.5, Mtb survived in a simple buffer and maintained intrabacterial pH. Therefore, Mtb resists phagolysosomal concentrations of acid. Mtb also maintained its intrabacterial pH and survived when phagocytosed by IFN-gamma-activated macrophages. We used transposon mutagenesis to identify genes responsible for Mtb's acid resistance. A strain disrupted in Rv3671c, a previously uncharacterized gene encoding a membrane-associated protein, was sensitive to acid and failed to maintain intrabacterial pH in acid in vitro and in activated macrophages. Growth of the mutant was also severely attenuated in mice. Thus, Mtb is able to resist acid, owing in large part to Rv3671c, and this resistance is essential for virulence. Disruption of Mtb's acid resistance and intrabacterial pH maintenance systems is an attractive target for chemotherapy.


Assuntos
Membrana Celular/microbiologia , Mycobacterium tuberculosis/metabolismo , Animais , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Interferon gama/metabolismo , Lisossomos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Mutação
5.
Infect Immun ; 74(3): 1751-6, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16495548

RESUMO

During the course of infection Mycobacterium tuberculosis predominantly resides within macrophages, where it encounters and is often able to resist the antibacterial mechanisms of the host. In this study, we assessed the role of macrophage phospholipases A2 (PLA2s) in defense against M. tuberculosis. Mouse bone marrow-derived macrophages (BMDMs) expressed cPLA2-IVA, cPLA2-IVB, iPLA2-VI, sPLA2-IIE, and sPLA2-XIIA. The expression of cPLA2-IVA was increased in response to M. tuberculosis, gamma interferon, or their combination, and cPLA2-IVA mediated the release of arachidonic acid, which was stimulated by M. tuberculosis in activated, but not unactivated, macrophages. We confirmed that arachidonic acid is highly mycobactericidal in a concentration- and pH-dependent manner in vitro. However, when M. tuberculosis-infected macrophages were treated with PLA2 inhibitors, intracellular survival of M. tuberculosis was not affected, even in inducible nitric oxide synthase-deficient macrophages, in which a major bactericidal mechanism is removed. Moreover, intracellular survival of M. tuberculosis was similar in cPLA2-IVA-deficient and wild-type macrophages. Our results demonstrate that the cytosolic PLA2s are not required by murine BMDMs to kill M. tuberculosis.


Assuntos
Citosol/enzimologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Fosfolipases A/fisiologia , Animais , Ácido Araquidônico/farmacologia , Citosol/imunologia , Citosol/microbiologia , Macrófagos/citologia , Macrófagos/enzimologia , Macrófagos/imunologia , Camundongos , Fosfolipases A/antagonistas & inibidores , Fosfolipases A/biossíntese , Fosfolipases A2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA