Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Cancer ; 148(10): 2579-2593, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33210294

RESUMO

In non-small cell lung cancer (NSCLC), activating mutations in the epidermal growth factor receptor (EGFR) induce sensitivity to EGFR tyrosine kinase inhibitors. Despite impressive clinical responses, patients ultimately relapse as a reservoir of drug-tolerant cells persist, which ultimately leads to acquired resistance mechanisms. We performed an unbiased high-throughput siRNA screen to identify proteins that abrogate the response of EGFR-mutant NSCLC to EGFR-targeted therapy. The deubiquitinase USP13 was a top hit resulting from this screen. Targeting USP13 increases the sensitivity to EGFR inhibition with small molecules in vitro and in vivo. USP13 selectively stabilizes mutant EGFR in a peptidase-independent manner by counteracting the action of members of the Cbl family of E3 ubiquitin ligases. We conclude that USP13 is a strong mutant EGFR-specific cotarget that could improve the treatment efficacy of EGFR-targeted therapies.

2.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316932

RESUMO

Mitochondrial metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways can potentially sensitize tumors with limited treatment options, such as triple-negative breast cancer (TNBC), to chemo- and/or radiotherapy. Dichloroacetate (DCA) is a specific inhibitor of the pyruvate dehydrogenase kinase (PDK), which leads to enhanced reactive oxygen species (ROS) production. ROS are the primary effector molecules of radiation and an increase hereof will enhance the radioresponse. In this study, we evaluated the effects of DCA and radiotherapy on two TNBC cell lines, namely EMT6 and 4T1, under aerobic and hypoxic conditions. As expected, DCA treatment decreased phosphorylated pyruvate dehydrogenase (PDH) and lowered both extracellular acidification rate (ECAR) and lactate production. Remarkably, DCA treatment led to a significant increase in ROS production (up to 15-fold) in hypoxic cancer cells but not in aerobic cells. Consistently, DCA radiosensitized hypoxic tumor cells and 3D spheroids while leaving the intrinsic radiosensitivity of the tumor cells unchanged. Our results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses. This study therefore paves the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance.


Assuntos
Neoplasias da Mama/metabolismo , Ácido Dicloroacético/farmacologia , Inibidores Enzimáticos/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Hipóxia Tumoral , Linhagem Celular , Feminino , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
3.
Cell Death Dis ; 13(7): 611, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840561

RESUMO

Non-small cell lung cancer (NSCLC) patients harboring activating mutations in epidermal growth factor receptor (EGFR) are sensitive to therapy with EGFR tyrosine kinase inhibitors (TKI). Despite remarkable clinical responses using EGFR TKI, surviving drug tolerant cells serve as a reservoir from which drug resistant tumors may emerge. This study addresses the need for improved efficacy of EGFR TKI by identifying targets involved in functional drug tolerance against them. To this aim, a high-throughput siRNA kinome screen was performed using two EGFR TKI-sensitive EGFR-mutant NSCLC cell lines in the presence/absence of the second-generation EGFR TKI afatinib. From the screen, Serine/Threonine/Tyrosine Kinase 1 (STYK1) was identified as a target that when downregulated potentiates the effects of EGFR inhibition in vitro. We found that chemical inhibition of EGFR combined with the siRNA-mediated knockdown of STYK1 led to a significant decrease in cancer cell viability and anchorage-independent cell growth. Further, we show that STYK1 selectively interacts with mutant EGFR and that the interaction is disrupted upon EGFR inhibition. Finally, we identified fibroblast growth factor 1 (FGF1) as a downstream effector of STYK1 in NSCLC cells. Accordingly, downregulation of STYK1 counteracted the afatinib-induced upregulation of FGF1. Altogether, we unveil STYK1 as a valuable target to repress the pool of surviving drug tolerant cells arising upon EGFR inhibition. Co-targeting of EGFR and STYK1 could lead to a better overall outcome for NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Tolerância a Medicamentos , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Afatinib/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Tolerância a Medicamentos/genética , Tolerância a Medicamentos/fisiologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Interferente Pequeno/genética , Receptores Proteína Tirosina Quinases/metabolismo
4.
Oncogene ; 38(31): 5933-5941, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285551

RESUMO

Two out of 41 non-small cell lung cancer patients enrolled in a clinical study were found with a somatic CRAF mutation in their tumor, namely CRAFP261A and CRAFP207S. To our knowledge, both mutations are novel in lung cancer and CRAFP261A has not been previously reported in cancer. Expression of CRAFP261A in HEK293T cells and BEAS-2B lung epithelial cells led to increased ERK pathway activation in a dimer-dependent manner, accompanied with loss of CRAF phosphorylation at the negative regulatory S259 residue. Moreover, stable expression of CRAFP261A in mouse embryonic fibroblasts and BEAS-2B cells led to anchorage-independent growth. Consistent with a previous report, we could not observe a gain-of-function with CRAFP207S. Type II but not type I RAF inhibitors suppressed the CRAFP261A-induced ERK pathway activity in BEAS-2B cells, and combinatorial treatment with type II RAF inhibitors and a MEK inhibitor led to a stronger ERK pathway inhibition and growth arrest. Our findings suggest that the acquisition of a CRAFP261A mutation can provide oncogenic properties to cells, and that such cells are sensitive to combined MEK and type II RAF inhibitors. CRAF mutations should be diagnostically and therapeutically explored in lung and perhaps other cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MAP Quinase Quinase Quinases/antagonistas & inibidores , Mutação , Proteínas Proto-Oncogênicas c-raf/genética , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores
5.
Cell Death Dis ; 7(12): e2560, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28005077

RESUMO

Signal transducer and activator of transcription 5 (STAT5) and nucleophosmin (NPM1) are critical regulators of multiple biological and pathological processes. Although a reciprocal regulatory relationship was established between STAT5A and a NPM-ALK fusion protein in T-cell lymphoma, no direct connection between STAT5 and wild-type NPM1 has been documented. Here we demonstrate a mutually regulatory relationship between STAT5 and NPM1. Induction of STAT5 phosphorylation at Y694 (P-STAT5) diminished NPM1 expression, whereas inhibition of STAT5 phosphorylation enhanced NPM1 expression. Conversely, NPM1 not only negatively regulated STAT5 phosphorylation but also preserved unphosphorylated STAT5 level. Mechanistically, we show that NPM1 downregulation by P-STAT5 is mediated by impairing the BRCA1-BARD1 ubiquitin ligase, which controls the stability of NPM1. In turn, decreased NPM1 levels led to suppression of p53 expression, resulting in enhanced cell survival. This study reveals a new STAT5 signaling pathway regulating p53 expression via NPM1 and uncovers new therapeutic targets for anticancer treatment in tumors driven by STAT5 signaling.


Assuntos
Proteína BRCA1/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Sobrevivência Celular , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Nucleofosmina , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA