Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Physiol ; 192(2): 1359-1377, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36913519

RESUMO

Companion cells and sieve elements play an essential role in vascular plants, and yet the details of the metabolism that underpins their function remain largely unknown. Here, we construct a tissue-scale flux balance analysis (FBA) model to describe the metabolism of phloem loading in a mature Arabidopsis (Arabidopsis thaliana) leaf. We explore the potential metabolic interactions between mesophyll cells, companion cells, and sieve elements based on the current understanding of the physiology of phloem tissue and through the use of cell type-specific transcriptome data as a weighting in our model. We find that companion cell chloroplasts likely play a very different role to mesophyll chloroplasts. Our model suggests that, rather than carbon capture, the most crucial function of companion cell chloroplasts is to provide photosynthetically generated ATP to the cytosol. Additionally, our model predicts that the metabolites imported into the companion cell are not necessarily the same metabolites that are exported in phloem sap; phloem loading is more efficient if certain amino acids are synthesized in the phloem tissue. Surprisingly, in our model predictions, the proton-pumping pyrophosphatase (H+-PPiase) is a more efficient contributor to the energization of the companion cell plasma membrane than the H+-ATPase.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Floema/genética , Floema/metabolismo , Transcriptoma/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , ATPases Translocadoras de Prótons/metabolismo
2.
Plant Cell ; 26(1): 296-309, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24399300

RESUMO

Whereas our knowledge about the diverse pathways aiding DNA repair upon genome damage is steadily increasing, little is known about the molecular players that adjust the plant cell cycle in response to DNA stress. By a meta-analysis of DNA stress microarray data sets, three family members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) class of cyclin-dependent kinase inhibitors were discovered that react strongly to genotoxicity. Transcriptional reporter constructs corroborated specific and strong activation of the three SIM/SMR genes in the meristems upon DNA stress, whereas overexpression analysis confirmed their cell cycle inhibitory potential. In agreement with being checkpoint regulators, SMR5 and SMR7 knockout plants displayed an impaired checkpoint in leaf cells upon treatment with the replication inhibitory drug hydroxyurea (HU). Surprisingly, HU-induced SMR5/SMR7 expression depends on ATAXIA TELANGIECTASIA MUTATED (ATM) and SUPPRESSOR OF GAMMA RESPONSE1, rather than on the anticipated replication stress-activated ATM AND RAD3-RELATED kinase. This apparent discrepancy was explained by demonstrating that, in addition to its effect on replication, HU triggers the formation of reactive oxygen species (ROS). ROS-dependent transcriptional activation of the SMR genes was confirmed by different ROS-inducing conditions, including high-light treatment. We conclude that the identified SMR genes are part of a signaling cascade that induces a cell cycle checkpoint in response to ROS-induced DNA damage.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/fisiologia , Dano ao DNA , Espécies Reativas de Oxigênio/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Hidroxiureia/farmacologia , Estresse Oxidativo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
3.
Proc Natl Acad Sci U S A ; 109(49): 20113-8, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23169634

RESUMO

Environmental stresses adversely affect plant growth and development. A common theme within these adverse conditions is the perturbation of reactive oxygen species (ROS) homeostasis. Here, we demonstrate that the ROS-inducible Arabidopsis thaliana WRKY15 transcription factor (AtWRKY15) modulates plant growth and salt/osmotic stress responses. By transcriptome profiling, a divergent stress response was identified in transgenic WRKY15-overexpressing plants that linked a stimulated endoplasmic reticulum-to-nucleus communication to a disrupted mitochondrial stress response under salt-stress conditions. We show that mitochondrial calcium-flux sensing might be important for regulating an active mitochondrial retrograde signaling and launching an appropriate defense response to confer salt-stress tolerance.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Análise em Microsséries , Mitocôndrias/fisiologia , Mutagênese Sítio-Dirigida , Pressão Osmótica , Reação em Cadeia da Polimerase em Tempo Real , Salinidade , Fatores de Transcrição/genética
4.
Plant Physiol ; 161(4): 1795-805, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23400705

RESUMO

There is growing evidence that for a comprehensive insight into the function of plant genes, it is crucial to assess their functionalities under a wide range of conditions. In this study, we examined the role of lesion simulating disease1 (LSD1), enhanced disease susceptibility1 (EDS1), and phytoalexin deficient4 (PAD4) in the regulation of photosynthesis, water use efficiency, reactive oxygen species/hormonal homeostasis, and seed yield in Arabidopsis (Arabidopsis thaliana) grown in the laboratory and in the field. We demonstrate that the LSD1 null mutant (lsd1), which is known to exhibit a runaway cell death in nonpermissive conditions, proves to be more tolerant to combined drought and high-light stress than the wild type. Moreover, depending on growing conditions, it shows variations in water use efficiency, salicylic acid and hydrogen peroxide concentrations, photosystem II maximum efficiency, and transcription profiles. However, despite these changes, lsd1 demonstrates similar seed yield under all tested conditions. All of these traits depend on EDS1 and PAD4. The differences in the pathways prevailing in the lsd1 in various growing environments are manifested by the significantly smaller number of transcripts deregulated in the field compared with the laboratory, with only 43 commonly regulated genes. Our data indicate that LSD1, EDS1, and PAD4 participate in the regulation of various molecular and physiological processes that influence Arabidopsis fitness. On the basis of these results, we emphasize that the function of such important regulators as LSD1, EDS1, and PAD4 should be studied not only under stable laboratory conditions, but also in the environment abounding in multiple stresses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostase , Fotossíntese , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Água/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Adaptação Fisiológica/efeitos da radiação , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Hidrolases de Éster Carboxílico/metabolismo , Análise por Conglomerados , Proteínas de Ligação a DNA/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Homeostase/efeitos dos fármacos , Homeostase/efeitos da radiação , Peróxido de Hidrogênio/metabolismo , Luz , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Transcriptoma/efeitos da radiação
5.
Proc Natl Acad Sci U S A ; 108(4): 1711-6, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21220338

RESUMO

Eukaryotic organisms evolved under aerobic conditions subjecting nuclear DNA to damage provoked by reactive oxygen species (ROS). Although ROS are thought to be a major cause of DNA damage, little is known about the molecular mechanisms protecting nuclear DNA from oxidative stress. Here we show that protection of nuclear DNA in plants requires a coordinated function of ROS-scavenging pathways residing in the cytosol and peroxisomes, demonstrating that nuclear ROS scavengers such as peroxiredoxin and glutathione are insufficient to safeguard DNA integrity. Both catalase (CAT2) and cytosolic ascorbate peroxidase (APX1) play a key role in protecting the plant genome against photorespiratory-dependent H(2)O(2)-induced DNA damage. In apx1/cat2 double-mutant plants, a DNA damage response is activated, suppressing growth via a WEE1 kinase-dependent cell-cycle checkpoint. This response is correlated with enhanced tolerance to oxidative stress, DNA stress-causing agents, and inhibited programmed cell death.


Assuntos
Arabidopsis/genética , Dano ao DNA , DNA de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Plantas/genética , Análise por Conglomerados , Citoplasma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Immunoblotting , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/genética , Peroxidases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Plant Cell Environ ; 35(2): 374-87, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21631535

RESUMO

Growth day length, CO(2) levels and H(2)O(2) all impact plant function, but interactions between them remain unclear. Using a whole-genome transcriptomics approach, we identified gene expression patterns responding to these three factors in Arabidopsis Col-0 and the conditional catalase-deficient mutant, cat2. Plants grown for 5 weeks at high CO(2) in short days (hCO(2)) were transferred to air in short days (SD air) or long days (LD air), and microarray data produced were subjected to three independent studies. The first two analysed genotype-independent responses. They identified 1549 genes differentially expressed after transfer from hCO(2) to SD air. Almost half of these, including genes modulated by sugars or associated with redox, stress or abscisic acid (ABA) functions, as well as light signalling and clock genes, were no longer significant after transfer to air in LD. In a third study, day length-dependent H(2)O(2)-responsive genes were identified by comparing the two genotypes. Two clearly independent responses were observed in cat2 transferred to air in SD and LD. Most H(2)O(2) -responsive genes were up-regulated more strongly in SD air. Overall, the analysis shows that both CO(2) and H(2)O(2) interact with day length and photoreceptor pathways, indicating close networking between carbon status, light and redox state in environmental responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Dióxido de Carbono/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Peróxido de Hidrogênio/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Catalase/genética , Catalase/metabolismo , Respiração Celular/efeitos dos fármacos , Respiração Celular/efeitos da radiação , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Luz , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Estresse Oxidativo , Fotoperíodo , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Transcriptoma
7.
Plant Cell Environ ; 35(2): 308-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21443605

RESUMO

The signal transduction mechanisms of the oxidative stress response in plants remain largely unexplored. Previously, increased levels of cellular hydrogen peroxide (H(2)O(2)) had been shown to drastically affect the plant transcriptome. Genome-wide transcriptome analyses allowed us to build a comprehensive inventory of H(2)O(2)-induced genes in plants. Here, the primary objective was to determine the subcellular localization of these genes and to assess potential trafficking during oxidative stress. After high-throughput cloning in Gateway-derived vectors, the subcellular localization of 49 proteins fused to the green fluorescent protein (GFP) was identified in a transient assay in tobacco (Nicotiana benthamiana) by means of agro-infiltration and confirmed for a selection of genes in transgenic Arabidopsis thaliana plants. Whereas eight of the GFP-tagged proteins are exclusively localized in the nucleus, 23 reside both in the nucleus and cytosol, in which several classes of known transcription factors and proteins of unknown function can be recognized. In this study, the mapping of the subcellular localization of H(2)O(2) -induced proteins paves the way for future research to unravel the H(2)O(2) responses in plants. Furthermore, the effect of increased H(2)O(2) levels on the subcellular localization of a subset of proteins was assessed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Clonagem Molecular , Análise por Conglomerados , Citosol/metabolismo , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma/efeitos dos fármacos
8.
Plant Physiol ; 153(4): 1692-705, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20543092

RESUMO

While it is well established that reactive oxygen species can induce cell death, intracellularly generated oxidative stress does not induce lesions in the Arabidopsis (Arabidopsis thaliana) photorespiratory mutant cat2 when plants are grown in short days (SD). One interpretation of this observation is that a function necessary to couple peroxisomal hydrogen peroxide (H(2)O(2))-triggered oxidative stress to cell death is only operative in long days (LD). Like lesion formation, pathogenesis-related genes and camalexin were only induced in cat2 in LD, despite less severe intracellular redox perturbation compared with SD. Lesion formation triggered by peroxisomal H(2)O(2) was modified by introducing secondary mutations into the cat2 background and was completely absent in cat2 sid2 double mutants, in which ISOCHORISMATE SYNTHASE1 (ICS1) activity is defective. In addition to H(2)O(2)-induced salicylic acid (SA) accumulation, the sid2 mutation in ICS1 abolished a range of LD-dependent pathogen responses in cat2, while supplementation of cat2 with SA in SD activated these responses. Nontargeted transcript and metabolite profiling identified clusters of genes and small molecules associated with the daylength-dependent ICS1-mediated relay of H(2)O(2) signaling. The effect of oxidative stress in cat2 on resistance to biotic challenge was dependent on both growth daylength and ICS1. We conclude that (1) lesions induced by intracellular oxidative stress originating in the peroxisomes can be genetically reverted; (2) the isochorismate pathway of SA synthesis couples intracellular oxidative stress to cell death and associated disease resistance responses; and (3) camalexin accumulation was strictly dependent on the simultaneous presence of both H(2)O(2) and SA signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Peróxido de Hidrogênio/metabolismo , Transferases Intramoleculares/metabolismo , Peroxissomos/metabolismo , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Indóis/metabolismo , Transferases Intramoleculares/genética , Metaboloma , Mutação , Estresse Oxidativo , Fotoperíodo , Pseudomonas syringae , Ácido Salicílico/metabolismo , Tiazóis/metabolismo
9.
J Exp Bot ; 61(15): 4197-220, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20876333

RESUMO

Hydrogen peroxide (H(2)O(2)) is an important signal molecule involved in plant development and environmental responses. Changes in H(2)O(2) availability can result from increased production or decreased metabolism. While plants contain several types of H(2)O(2)-metabolizing proteins, catalases are highly active enzymes that do not require cellular reductants as they primarily catalyse a dismutase reaction. This review provides an update on plant catalase genes, function, and subcellular localization, with a focus on recent information generated from studies on Arabidopsis. Original data are presented on Arabidopsis catalase single and double mutants, and the use of some of these lines as model systems to investigate the outcome of increases in intracellular H(2)O(2) are discussed. Particular attention is paid to interactions with cell thiol-disulphide status; the use of catalase-deficient plants to probe the apparent redundancy of reductive H(2)O(2)-metabolizing pathways; the importance of irradiance and growth daylength in determining the outcomes of catalase deficiency; and the induction of pathogenesis-related responses in catalase-deficient lines. Within the context of strategies aimed at understanding and engineering plant stress responses, the review also considers whether changes in catalase activities in wild-type plants are likely to be a significant part of plant responses to changes in environmental conditions or biotic challenge.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/genética , Catalase/metabolismo , Modelos Biológicos , Mutação/genética , Estresse Fisiológico , Sequência de Aminoácidos , Catalase/química , Catalase/classificação , Catalase/genética , Dados de Sequência Molecular , Oxirredução
10.
J Plant Physiol ; 170(6): 548-59, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23287000

RESUMO

Most of our knowledge on the regulation of photosynthesis originates from studies performed in highly controlled laboratory conditions. However, in their natural habitats plants are simultaneously subjected to a broad range of abiotic and biotic stimuli which influence photosynthetic efficiency; hence there is an emerging need to examine the process of photosynthesis under multivariable field conditions in order to elucidate the mechanisms that underlie its regulation. Such knowledge has potential for providing novel targets that would improve both crop yield and performance. In the present study we compared laboratory- and field-grown Arabidopsis thaliana plants in terms of photosynthetic efficiency in modulated light intensities and CO2 concentrations. We show here that the field-acclimated plants display highly efficient photosynthesis and are more tolerant to variable light intensities and CO2 concentrations than their laboratory-grown counterparts. We also demonstrate that some structural rearrangements of LHCII and PSII, together with altered pigments composition and stomatal density, are responsible for the differences in assimilation and photochemistry. Furthermore, we employ a transcript profiling approach to explain the genetic mechanisms underlying these adaptations and suggest that they are mainly induced by the high and fluctuating light intensities which occur in the natural environment.


Assuntos
Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Luz , Fotossíntese , Adaptação Fisiológica , Fluorescência , Estudo de Associação Genômica Ampla , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , RNA/metabolismo , Transcrição Gênica
11.
Science ; 342(6160): 860-3, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24158907

RESUMO

The quiescent center (QC) plays an essential role during root development by creating a microenvironment that preserves the stem cell fate of its surrounding cells. Despite being surrounded by highly mitotic active cells, QC cells self-renew at a low proliferation rate. Here, we identified the ERF115 transcription factor as a rate-limiting factor of QC cell division, acting as a transcriptional activator of the phytosulfokine PSK5 peptide hormone. ERF115 marks QC cell division but is restrained through proteolysis by the APC/C(CCS52A2) ubiquitin ligase, whereas QC proliferation is driven by brassinosteroid-dependent ERF115 expression. Together, these two antagonistic mechanisms delimit ERF115 activity, which is called upon when surrounding stem cells are damaged, revealing a cell cycle regulatory mechanism accounting for stem cell niche longevity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Divisão Celular/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Mitose/genética , Mitose/fisiologia , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Proteólise , Transdução de Sinais , Nicho de Células-Tronco , Fatores de Transcrição/genética
13.
Trends Plant Sci ; 16(6): 300-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21482172

RESUMO

Reactive oxygen species (ROS) play a multitude of signaling roles in different organisms from bacteria to mammalian cells. They were initially thought to be toxic byproducts of aerobic metabolism, but have now been acknowledged as central players in the complex signaling network of cells. In this review, we will attempt to address several key questions related to the use of ROS as signaling molecules in cells, including the dynamics and specificity of ROS signaling, networking of ROS with other signaling pathways, ROS signaling within and across different cells, ROS waves and the evolution of the ROS gene network.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Viridiplantae/metabolismo , Evolução Molecular , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , NADPH Oxidases/metabolismo , Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Superóxidos/metabolismo , Viridiplantae/genética
14.
Proc Natl Acad Sci U S A ; 104(38): 15150-5, 2007 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-17823244

RESUMO

Transgenic plants with reduced poly(ADP-ribose) polymerase (PARP) levels have broad-spectrum stress-resistant phenotypes. Both Arabidopsis thaliana and oilseed rape (Brassica napus) lines overexpressing RNA interference-PARP constructs were more resistant to various abiotic stress treatments in laboratory and greenhouse experiments without negative effects on growth, development, and seed production. This outperforming stress tolerance was initially attributed solely to a maintained energy homeostasis due to reduced NAD(+) consumption. We show that in PARP2-deficient Arabidopsis plants, the observed abiotic stress resistance can also be explained by alterations in abscisic acid levels that facilitate the induction of a wide set of defense-related genes.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Poli(ADP-Ribose) Polimerases/genética , Transdução de Sinais , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADP-Ribose Cíclica/metabolismo , Genoma de Planta , Análise em Microsséries , Modelos Biológicos , Poli(ADP-Ribose) Polimerases/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Transcrição Gênica
15.
Plant Physiol ; 141(2): 436-45, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16603662

RESUMO

Reactive oxygen species (ROS) are key players in the regulation of plant development, stress responses, and programmed cell death. Previous studies indicated that depending on the type of ROS (hydrogen peroxide, superoxide, or singlet oxygen) or its subcellular production site (plastidic, cytosolic, peroxisomal, or apoplastic), a different physiological, biochemical, and molecular response is provoked. We used transcriptome data generated from ROS-related microarray experiments to assess the specificity of ROS-driven transcript expression. Data sets obtained by exogenous application of oxidative stress-causing agents (methyl viologen, Alternaria alternata toxin, 3-aminotriazole, and ozone) and from a mutant (fluorescent) and transgenic plants, in which the activity of an individual antioxidant enzyme was perturbed (catalase, cytosolic ascorbate peroxidase, and copper/zinc superoxide dismutase), were compared. In total, the abundance of nearly 26,000 transcripts of Arabidopsis (Arabidopsis thaliana) was monitored in response to different ROS. Overall, 8,056, 5,312, and 3,925 transcripts showed at least a 3-, 4-, or 5-fold change in expression, respectively. In addition to marker transcripts that were specifically regulated by hydrogen peroxide, superoxide, or singlet oxygen, several transcripts were identified as general oxidative stress response markers because their steady-state levels were at least 5-fold elevated in most experiments. We also assessed the expression characteristics of all annotated transcription factors and inferred new candidate regulatory transcripts that could be responsible for orchestrating the specific transcriptomic signatures triggered by different ROS. Our analysis provides a framework that will assist future efforts to address the impact of ROS signals within environmental stress conditions and elucidate the molecular mechanisms of the oxidative stress response in plants.


Assuntos
Arabidopsis/metabolismo , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Arabidopsis/genética , Análise de Sequência com Séries de Oligonucleotídeos
16.
Plant Physiol ; 139(2): 806-21, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16183842

RESUMO

In plants, reactive oxygen species and, more particularly, hydrogen peroxide (H(2)O(2)) play a dual role as toxic by-products of normal cell metabolism and as regulatory molecules in stress perception and signal transduction. Peroxisomal catalases are an important sink for photorespiratory H(2)O(2). Using ATH1 Affymetrix microarrays, expression profiles were compared between control and catalase-deficient Arabidopsis (Arabidopsis thaliana) plants. Reduced catalase levels already provoked differences in nuclear gene expression under ambient growth conditions, and these effects were amplified by high light exposure in a sun simulator for 3 and 8 h. This genome-wide expression analysis allowed us to reveal the expression characteristics of complete pathways and functional categories during H(2)O(2) stress. In total, 349 transcripts were significantly up-regulated by high light in catalase-deficient plants and 88 were down-regulated. From this data set, H(2)O(2) was inferred to play a key role in the transcriptional up-regulation of small heat shock proteins during high light stress. In addition, several transcription factors and candidate regulatory genes involved in H(2)O(2) transcriptional gene networks were identified. Comparisons with other publicly available transcriptome data sets of abiotically stressed Arabidopsis revealed an important intersection with H(2)O(2)-deregulated genes, positioning elevated H(2)O(2) levels as an important signal within abiotic stress-induced gene expression. Finally, analysis of transcriptional changes in a combination of a genetic (catalase deficiency) and an environmental (high light) perturbation identified a transcriptional cluster that was strongly and rapidly induced by high light in control plants, but impaired in catalase-deficient plants. This cluster comprises the complete known anthocyanin regulatory and biosynthetic pathway, together with genes encoding unknown proteins.


Assuntos
Antocianinas/biossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Antocianinas/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Catalase/genética , Catalase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Choque Térmico/genética , Luz , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Transcrição Gênica/efeitos da radiação
17.
Plant J ; 39(1): 45-58, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15200641

RESUMO

In plants, hydrogen peroxide (H(2)O(2)) plays a major signaling role in triggering both a defense response and cell death. Increased cellular H(2)O(2) levels and subsequent redox imbalances are managed at the production and scavenging levels. Because catalases are the major H(2)O(2) scavengers that remove the bulk of cellular H(2)O(2), altering their levels allows in planta modulation of H(2)O(2) concentrations. Reduced peroxisomal catalase activity increased sensitivity toward both ozone and photorespiratory H(2)O(2)-induced cell death in transgenic catalase-deficient Arabidopsis thaliana. These plants were used as a model system to build a comprehensive inventory of transcriptomic variations, which were triggered by photorespiratory H(2)O(2) induced by high-light (HL) irradiance. In addition to an H(2)O(2)-dependent and -independent type of transcriptional response during light stress, microarray analysis on both control and transgenic catalase-deficient plants, exposed to 0, 3, 8, and 23 h of HL, revealed several specific regulatory patterns of gene expression. Thus, photorespiratory H(2)O(2) has a direct impact on transcriptional programs in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/efeitos da radiação , Expressão Gênica/efeitos da radiação , Peróxido de Hidrogênio/metabolismo , Proteínas/metabolismo , Arabidopsis/genética , Morte Celular/efeitos da radiação , Meios de Cultura , Regulação da Expressão Gênica de Plantas , Luz , Análise de Sequência com Séries de Oligonucleotídeos , Ozônio/toxicidade , Peroxissomos/enzimologia , Folhas de Planta/enzimologia , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA