Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Tissue Bank ; 25(2): 685-695, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38381276

RESUMO

For decades, dermal tissue grafts have been used in various regenerative, reconstructive, and augmentative procedures across the body. To eliminate antigenicity and immunogenic response while still preserving the individual components and collective structural integrity of the extracellular matrix (ECM), dermis can be decellularized. Acellular dermal matrix (ADM) products like such are produced to accurately serve diverse clinical purposes. The aim of the present study is to evaluate the efficacy of a novel decellularization protocol of the human dermis, which eliminates residual human genetic material without compromising the biomechanical integrity and collagenous content of the tissue. Moreover, a freeze-drying protocol was validated. The results showed that though our decellularization protocol, human dermis can be decellularized obtaining a biocompatible matrix. The procedure is completely realized in GMP aseptic condition, avoiding tissue terminal sterilization.


Assuntos
Criopreservação , Derme , Liofilização , Humanos , Criopreservação/métodos , Derme/citologia , Derme Acelular , Matriz Extracelular Descelularizada/química , Transplante de Pele/métodos , Matriz Extracelular/química
2.
Cell Tissue Bank ; 19(4): 721-726, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30206741

RESUMO

Although careful donor selection reduces tissue contamination, close microbiological control of harvested allografts remains a key task of tissue banks. To guarantee the safety of human tissues for allograft transplantation, a decontamination regimen must be adopted which, as recommended by European guidelines, is active against the majority of microorganisms isolated in tissues. Antibiotic decontamination methods differ from one tissue bank to another in terms of antimicrobial agents, temperature and length of exposure. After identifying the most effective antibiotics against the bacterial strains most commonly isolated in allografts, Treviso Tissue Bank Foundation demonstrated the efficacy of an antibiotic cocktail for tissue decontamination containing Gentamicin, Vancomycin and Meropenem. The aim of this study was to analyse the degradation kinetics of the three antibiotics according to preparation method and use. The results show that only Meropenem is unstable at + 4 °C, while Gentamicin and Vancomycin are valid for over 10 days. We thus established to add Meropenem before the start of the tissue decontamination phase.


Assuntos
Antibacterianos/farmacologia , Descontaminação/métodos , Bancos de Tecidos , Estabilidade de Medicamentos , Gentamicinas/farmacologia , Humanos , Cinética , Soluções , Vancomicina/farmacologia
3.
Microorganisms ; 8(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936600

RESUMO

PFASs (perfluoroalkyl and polyfluoroalkyl substances) are highly fluorinated, aliphatic, synthetic compounds with high thermal and chemical stability as well as unique amphiphilic properties which make them ingredients in a range of industrial processes. PFASs have attracted consideration due to their persistence, toxicity and bioaccumulation tendency in the environment. Recently, attention has begun to be addressed to shorter-chain PFASs, such as perfluorohexane sulfonate [PFHxS], apparently less toxic to and more easily eliminated from lab animals. However, short-chain PFASs represent end-products from the transformation of fluorotelomers whose biotic breakdown reactions have not been identified to date. This means that such emergent pollutants will tend to accumulate and persist in ecosystems. Since we are just learning about the interaction between short-chain PFASs and microorganisms, this study reports on the response to PFHxS of two Pseudomonas sp. strains isolated from environmental matrices contaminated by PFASs. The PFHxS bioaccumulation potential of these strains was unveiled by exploiting different physiological conditions as either axenic or mixed cultures under alkanothrofic settings. Moreover, electron microscopy revealed nonorthodox features of the bacterial cells, as a consequence of the stress caused by both organic solvents and PFHxS in the culturing substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA