Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J ; 45(14): 1224-1240, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38441940

RESUMO

Heart failure (HF) patients have a significantly higher risk of new-onset cancer and cancer-associated mortality, compared to subjects free of HF. While both the prevention and treatment of new-onset HF in patients with cancer have been investigated extensively, less is known about the prevention and treatment of new-onset cancer in patients with HF, and whether and how guideline-directed medical therapy (GDMT) for HF should be modified when cancer is diagnosed in HF patients. The purpose of this review is to elaborate and discuss the effects of pillar HF pharmacotherapies, as well as digoxin and diuretics on cancer, and to identify areas for further research and novel therapeutic strategies. To this end, in this review, (i) proposed effects and mechanisms of action of guideline-directed HF drugs on cancer derived from pre-clinical data will be described, (ii) the evidence from both observational studies and randomized controlled trials on the effects of guideline-directed medical therapy on cancer incidence and cancer-related outcomes, as synthetized by meta-analyses will be reviewed, and (iii) considerations for future pre-clinical and clinical investigations will be provided.


Assuntos
Insuficiência Cardíaca , Neoplasias , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Neoplasias/epidemiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38932694

RESUMO

Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O2; 20% CO2 in N2 for 15 minutes) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat-shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (KIM-1, NGAL), hypoxic- and heat shock factors (HIF-1α, HSF-1, HSP-27), pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, MCP-1), and fibrotic markers (TGF-ß, CTGF, Fibronectin) promptly after PA. Moreover, a machine learning model was identified through Random Forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic-, heat-shock-, pro-inflammatory-, and pro-fibrotic response after renal IRI compared to controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. Additionally, the parameters identified through Random Forest analysis provide a robust foundation for future biomarker research in the context of PA.

3.
Anal Chem ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684213

RESUMO

A methodology based on the use of asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS with size fraction-targeted isotope dilution analysis (IDA) has been developed, validated, and applied for the first time to determine the mass fraction of nanoscale silica (SiO2). For this purpose, 29Si-enriched SiO2 nanoparticles, to be used as an IDA spike/internal standard, were synthesized and characterized in-house. Double IDA was used to quantify an aqueous suspension of Stöber silica particles of similar characteristics to those of the 29SiO2 nanoparticle (NP) spike using a representative test material of natural Si isotopic composition as the calibrant. For fumed SiO2 NP in a highly complex food matrix, a methodology based on single IDA with AF4/ICP-MS using the same 29SiO2 NP spike was developed and validated. Relative expanded measurement uncertainties (k = 2) of 4% (double IDA) and 8% (single IDA) were achieved for nanoscale silica mass fractions of 5143 and 107 mg kg-1 in water suspension and food matrix, respectively. To assess the accuracy of AF4/ICP-IDMS for the characterization of SiO2 NP in a food matrix, standard addition measurements on samples spiked with Aerosil AF200, also in-house characterized for Si mass fraction, were undertaken, with an average recovery of 95.6 ± 4.1% (RSD, n = 3) obtained. The particle-specific IDA data obtained for both SiO2 NP-containing samples were also compared with that of post-AF4 channel external calibration using inorganic Si standards. The mass fractions obtained by IDA agreed well with those obtained by external calibration within their associated measurement uncertainties.

4.
Basic Res Cardiol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935171

RESUMO

Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug class initially designed and approved for treatment of diabetes mellitus, have been shown to exert pleiotropic metabolic and direct cardioprotective and nephroprotective effects that extend beyond their glucose-lowering action. These properties prompted their use in two frequently intertwined conditions, heart failure and chronic kidney disease. Their unique mechanism of action makes SGLT2i an attractive option also to lower the rate of cardiac events and improve overall survival of oncological patients with preexisting cardiovascular risk and/or candidate to receive cardiotoxic therapies. This review will cover biological foundations and clinical evidence for SGLT2i modulating myocardial function and metabolism, with a focus on their possible use as cardioprotective agents in the cardio-oncology settings. Furthermore, we will explore recently emerged SGLT2i effects on hematopoiesis and immune system, carrying the potential of attenuating tumor growth and chemotherapy-induced cytopenias.

5.
Cell Commun Signal ; 22(1): 282, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778340

RESUMO

Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.


Assuntos
Movimento Celular , Vesículas Extracelulares , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Humanos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Vemurafenib/farmacologia , Pirimidinonas/farmacologia , Piridonas/farmacologia , Piridonas/uso terapêutico , Imidazóis/farmacologia , Oximas/farmacologia
6.
Langmuir ; 40(24): 12353-12367, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848254

RESUMO

Biodegradable nanoparticle-based emulsions exhibit immense potential in various applications, particularly in the pharmaceutical, cosmetic, and food industries. This study delves into the intricate interfacial behavior of Pluronic F127 modified poly(lactic-co-glycolic acid) (PLGA-F127) nanoparticles, a crucial determinant of their ability to stabilize Pickering emulsions. Employing a combination of Langmuir balance, surface tension, and diffusion coefficient measurements, we investigate the interfacial dynamics of PLGA-F127 nanoparticles under varying temperature and ionic strength conditions. Theoretical calculations are employed to elucidate the underlying mechanisms governing these phenomena. Our findings reveal a profound influence of temperature-dependent Pluronic layer behavior and electrostatic and steric interactions on the interfacial dynamics. Nonlinear changes in surface tension are observed, reflecting the interplay of these factors. Particle aggregation is found to be prevalent at elevated temperatures and ionic strengths, compromising the stability and emulsification efficiency of the formed emulsions. This work provides insights into the rational design of stable and efficient biodegradable nanoparticle-based Pickering emulsions, broadening their potential applications in various fields.

7.
J Chem Inf Model ; 64(12): 4850-4862, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38850237

RESUMO

The human voltage-gated proton channel, hHV1, is highly expressed in various cell types including macrophages, B lymphocytes, microglia, sperm cells and also in various cancer cells. Overexpression of HV1 has been shown to promote tumor formation by highly metastatic cancer cells, and has been associated with neuroinflammatory diseases, immune response disorders and infertility, suggesting a potential use of hHV1 inhibitors in numerous therapeutic areas. To identify compounds targeting this channel, we performed a structure-based virtual screening on an open structure of the human HV1 channel. Twenty selected virtual screening hits were tested on Chinese hamster ovary (CHO) cells transiently expressing hHV1, with compound 13 showing strong block of the proton current with an IC50 value of 8.5 µM. Biological evaluation of twenty-three additional analogs of 13 led to the discovery of six other compounds that blocked the proton current by more than 50% at 50 µM concentration. This allowed for an investigation of structure-activity relationships. The antiproliferative activity of the selected promising hHV1 inhibitors was investigated in the cell lines MDA-MB-231 and THP-1, where compound 13 inhibited growth with an IC50 value of 9.0 and 8.1 µM, respectively. The identification of a new structural class of HV1 inhibitors contributes to our understanding of the structural requirements for inhibition of this ion channel and opens up the possibility of investigating the role of HV1 inhibitors in various pathological conditions and in cancer therapy.


Assuntos
Cricetulus , Canais Iônicos , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Células CHO , Animais , Relação Estrutura-Atividade , Avaliação Pré-Clínica de Medicamentos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Interface Usuário-Computador , Simulação de Acoplamento Molecular
8.
Nanotechnology ; 35(38)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861978

RESUMO

Biomedical analytical applications, as well as the industrial production of high-quality nano- and sub-micrometre particles, require accurate methods to quantify the absolute number concentration of particles. In this context, small-angle x-ray scattering (SAXS) is a powerful tool to determine the particle size and concentration traceable to the Système international d'unités (SI). Therefore, absolute measurements of the scattering cross-section must be performed, which require precise knowledge of all experimental parameters, such as the electron density of solvent and particles, whereas the latter is often unknown. Within the present study, novel SAXS-based approaches to determine the size distribution, density and number concentrations of sub-micron spherical silica particles with narrow size distributions and mean diameters between 160 nm and 430 nm are presented. For the first-time traceable density and number concentration measurements of silica particles are presented and current challenges in SAXS measurements such as beam-smearing, poorly known electron densities and moderately polydisperse samples are addressed. In addition, and for comparison purpose, atomic force microscopy has been used for traceable measurements of the size distribution and single particle inductively coupled plasma mass spectrometry with the dynamic mass flow approach for the accurate quantification of the number concentrations of silica particles. The possibilities and limitations of the current approaches are critically discussed in this study.

9.
Acta Pharmacol Sin ; 45(2): 339-353, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816857

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipid mediator that has been found to ameliorate nonsteroidal anti-inflammatory drug (NSAID)-induced gastric injury by acting on lysophosphatidic acid type 2 receptor (LPAR2). In this study, we investigated whether LPAR2 signaling was implicated in the development of NSAID-induced small intestinal injury (enteropathy), another major complication of NSAID use. Wild-type (WT) and Lpar2 deficient (Lpar2-/-) mice were treated with a single, large dose (20 or 30 mg/kg, i.g.) of indomethacin (IND). The mice were euthanized at 6 or 24 h after IND treatment. We showed that IND-induced mucosal enteropathy and neutrophil recruitment occurred much earlier (at 6 h after IND treatment) in Lpar2-/- mice compared to WT mice, but the tissue levels of inflammatory mediators (IL-1ß, TNF-α, inducible COX-2, CAMP) remained at much lower levels. Administration of a selective LPAR2 agonist DBIBB (1, 10 mg/kg, i.g., twice at 24 h and 30 min before IND treatment) dose-dependently reduced mucosal injury and neutrophil activation in enteropathy, but it also enhanced IND-induced elevation of several proinflammatory chemokines and cytokines. By assessing caspase-3 activation, we found significantly increased intestinal apoptosis in IND-treated Lpar2-/- mice, but it was attenuated after DBIBB administration, especially in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Finally, we showed that IND treatment reduced the plasma activity and expression of autotaxin (ATX), the main LPA-producing enzyme, and also reduced the intestinal expression of Lpar2 mRNA, which preceded the development of mucosal damage. We conclude that LPAR2 has a dual role in NSAID enteropathy, as it contributes to the maintenance of mucosal integrity after NSAID exposure, but also orchestrates the inflammatory responses associated with ulceration. Our study suggests that IND-induced inhibition of the ATX-LPAR2 axis is an early event in the pathogenesis of enteropathy.


Assuntos
Diabetes Mellitus Tipo 2 , Enteropatias , Lisofosfolipídeos , Camundongos , Animais , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Anti-Inflamatórios não Esteroides , Indometacina/efeitos adversos , Enteropatias/induzido quimicamente
10.
Cryobiology ; 116: 104909, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38763350

RESUMO

We studied the impact of modulating cholesterol levels in zebrafish sperm plasma membranes using cholesterol-loaded methyl-ß-cyclodextrin (CLC) and unloaded methyl-ß-cyclodextrin (MßC). Zebrafish sperm were treated with these substances before cryopreservation, and post-thaw sperm motility and in vitro fertilization (IVF) rates were compared between treated and untreated samples. Our findings indicate that adding cholesterol to sperm membranes increases post-thaw motility, motile cell count, and motile cell survival within a 0.5-4.0 mg per 1.2 × 108 cell concentration range. Conversely, depleting cholesterol using MßC at 1.0 and 2.0 mg per 1.2 × 108 cells reduced these parameters. On average, all CLC-treated sperm samples produced a 15 % higher IVF rate compared to untreated sperm. Including CLC in the extender before cryopreservation is beneficial for post-thaw sperm quantity and quality in zebrafish.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37818738

RESUMO

Paradise fish (Macropodus opercularis) is an air-breathing freshwater fish species with a signature labyrinth organ capable of extracting oxygen from the air that helps these fish to survive in hypoxic environments. The appearance of this evolutionary innovation in anabantoids resulted in a rewired circulatory system, but also in the emergence of species-specific behaviors, such as territorial display, courtship and parental care in the case of the paradise fish. Early zoologists were intrigued by the structure and function of the labyrinth apparatus and a series of detailed descriptive histological studies at the beginning of the 20th century revealed the ontogenesis and function of this specialized system. A few decades later, these fish became the subject of numerous ethological studies, and detailed ethograms of their behavior were constructed. These latter studies also demonstrated a strong genetic component underlying their behavior, but due to lack of adequate molecular tools, the fine genetic dissection of the behavior was not possible at the time. The technological breakthroughs that transformed developmental biology and behavioral genetics in the past decades, however, give us now a unique opportunity to revisit these old questions. Building on the classic descriptive studies, the new methodologies will allow us to follow the development of the labyrinth apparatus at a cellular resolution, reveal the genes involved in this process and also the genetic architecture behind the complex behaviors that we can observe in this species.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37614078

RESUMO

Diet is an external factor that affects the physiological baseline of research animals. It can shape gut microbiome, which can impact the host. As a result, dietary variation can challenge experimental reproducibility and data integration across studies when not appropriately considered. To control for diet-induced variation, reference diets have been developed for common biomedical models. However, such reference diets have not yet been developed for nontraditional model organisms, such as Xiphophorus species. In this study, we compared two diets designed for zebrafish, a commercial zebrafish diet (Gemma and GEM), and a proposed zebrafish reference diet developed by the Watts laboratory at the University of Alabama at Birmingham (WAT) to the Xiphophorus Genetic Stock Center custom diet (CON) to evaluate the influence of diet on the Xiphophorus gut microbiome. Xiphophorus maculatus were fed the three diets from 2 to 6 months of age. Feces were collected and the gut microbiome was assessed using 16S rRNA sequencing every month. We observed substantial diet-driven variation in the gut microbiome. Our results indicate that diets developed specifically for zebrafish can affect the gut microbiome composition and may not be optimal for Xiphophorus.

13.
J Chem Inf Model ; 63(12): 3799-3813, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37278479

RESUMO

Computer-assisted study and design of non-natural peptidomimetics is increasingly important in the development of novel constructs with widespread applicability. Among these methods, molecular dynamics can accurately describe monomeric as well as oligomeric states of these compounds. We studied seven different sequences composed of cyclic and acyclic ß-amino acids, the closest homologues of natural peptides, and compared the performance on them of three force field families in which specific modifications were made to improve reproduction of ß-peptide structures. Altogether 17 systems were simulated, each for 500 ns, testing multiple starting conformations and in three cases also oligomer formation and stability from eight ß-peptide monomers. The results indicated that our recently developed CHARMM force field extension, based on torsional energy path matching of the ß-peptide backbone against quantum-chemical calculations, performs best overall, reproducing the experimental structures accurately in all monomeric simulations and correctly describing all the oligomeric examples. The Amber and GROMOS force fields could only treat some of the seven peptides (four in each case) without further parametrization. Amber was able to reproduce the experimental secondary structure of those ß-peptides which contained cyclic ß-amino acids, while the GROMOS force field had the lowest performance in this sense. From the latter two, Amber was able to hold together already formed associates in the prepared state but was not able to yield spontaneous oligomer formation in the simulations.


Assuntos
Âmbar , Simulação de Dinâmica Molecular , Humanos , Peptídeos/química , Estrutura Secundária de Proteína , Aminoácidos
14.
J Phys Chem A ; 127(24): 5287-5297, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37307218

RESUMO

Machine-learned representations of potential energy surfaces generated in the output layer of a feedforward neural network are becoming increasingly popular. One difficulty with neural network output is that it is often unreliable in regions where training data is missing or sparse. Human-designed potentials often build in proper extrapolation behavior by choice of functional form. Because machine learning is very efficient, it is desirable to learn how to add human intelligence to machine-learned potentials in a convenient way. One example is the well-understood feature of interaction potentials that they vanish when subsystems are too far separated to interact. In this article, we present a way to add a new kind of activation function to a neural network to enforce low-dimensional constraints. In particular, the activation function depends parametrically on all of the input variables. We illustrate the use of this step by showing how it can force an interaction potential to go to zero at large subsystem separations without either inputting a specific functional form for the potential or adding data to the training set in the asymptotic region of geometries where the subsystems are separated. In the process of illustrating this, we present an improved set of potential energy surfaces for the 14 lowest 3A' states of O3. The method is more general than this example, and it may be used to add other low-dimensional knowledge or lower-level knowledge to machine-learned potentials. In addition to the O3 example, we present a greater-generality method called parametrically managed diabatization by deep neural network (PM-DDNN) that is an improvement on our previously presented permutationally restrained diabatization by deep neural network (PR-DDNN).

15.
J Phys Chem A ; 127(45): 9635-9640, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37916790

RESUMO

Constructing analytic representations of global and semiglobal potential energy surfaces is difficult and can be laborious, and it is even harder when one needs coupled potential energy surfaces and their electronically nonadiabatic couplings. When accomplished, however, the resulting potential functions are a valuable resource. To facilitate the convenient use of potentials that have been developed, we provide a collection of existing surfaces in a library with consistent units and formats. A potential energy surface library of this type, namely PotLib, was built more than 20 years ago. However, that library only provided pristine Fortran subroutines for each potential energy surface, and therefore, it is not as user-friendly as would be desirable. Here, we report the creation of ChemPotPy, a CHEMical library of POTential energy surfaces in PYthon. ChemPotPy is a user-friendly library for analytic representation of single-state and multistate potential energy surfaces and couplings. A given entry in the library contains an analytic potential energy function or analytic functions for a set of coupled potential energy surfaces, and depending on the case, it may also include analytic or numerical gradients, nonadiabatic coupling vectors, and/or diabatic potential energy matrices and their gradients. Only three inputs, namely, the chemical formula of the system, the name of the potential energy surface or surface set, and the Cartesian geometry, are required. ChemPotPy uses the same units for input and output quantities of all surfaces and surface sets to facilitate general interfaces with the dynamics programs. The initial version of the library contains 338 entries, and we anticipate that more will be added in the future.

16.
Cryobiology ; 113: 104792, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944879

RESUMO

Aquatic biomedical model organisms play a substantial role in advancing our understanding of human health, however, comparably little work has been directed towards developing dependable, high-throughput storage programs for valuable genetic resources. The Zebrafish International Resource Center (ZIRC) has developed a standardized cryopreservation pathway and stored thousands of genetic lines in their repository for use by the biomedical research community. This has yet to be replicated in other facilities, and an overall repository-level pathway has never been analyzed for aquatic species. To encourage repository development for other biomedical models and to improve the ZIRC storage process and system, this study used discrete-event simulation modeling to systematically analyze the cryopreservation pathway for efficiency, and to identify improvements. The models reflected "real-world" working conditions and were used to simulate key outputs, such as production capacity over time (throughput) and steps in the process that limit production (bottlenecks). With these models, recommendations were identified to eliminate waiting times and increase efficiency. These included following proper husbandry protocols because male quality significantly affected production time, and the use of part-time operators to assist with steps that had longer Waiting Times (i.e., time samples spent in a queue) to increase production capacity. Simulation process modeling is a powerful tool that can improve the operations of existing repositories. It can also support repository development at other biomedical stock centers, and at other facilities devoted to aquatic species such as research, conservation, and aquaculture production hatcheries.


Assuntos
Criopreservação , Peixe-Zebra , Animais , Masculino , Humanos , Criopreservação/métodos , Peixe-Zebra/genética , Organismos Aquáticos , Aquicultura/métodos
17.
Perfusion ; : 2676591231160272, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912692

RESUMO

INTRODUCTION: Venovenous extracorporeal membrane oxygenation (V-V ECMO) is recommended for the support of patients with severe COVID-19 associated severe respiratory failure (SRF). We report the characteristics and outcome of COVID-19 patients supported with V-V ECMO in a Hungarian centre. METHODS: We retrospectively collected data on all patients admitted with proven SARS CoV-2 infection who received V-V ECMO support between March 2021 and May 2022. RESULTS: Eighteen patients were placed on ECMO during this period, (5 women, age (mean ± SD) 44 ± 10 years, APACHE II score (median (interquartile range)) 12 (10-14.5)). Before ECMO support, they had been hospitalised for 6 (4-11) days. Fifteen patients received noninvasive ventilation for 4 (2-8) days, two patients had high flow nasal oxygen therapy, for one day each. They had already been intubated for 2.5 (1-6) days. Prone position was applied in 15 cases. On the day before ECMO initiation the Lung Injury Score was 3.25 (3-3.26), the PaO2/FiO2 ratio was 71 ± 19 mmHg. The duration of V-V ECMO support was 26 ± 20 days, and the longest run lasted 70 days. Patients were mechanically ventilated for 34 ± 23 days. The intensive care unit (ICU) and the hospital length of stay were 40 ± 28 days and 45 ± 31 days, respectively. Eleven patients were successfully weaned from ECMO. The ICU survival rate was 56%, the in-hospital survival was 50%. All patients who were discharged from hospital reported a good health-related quality of life Rankin score (0-2) at the 5-16 months follow-up. CONCLUSIONS: During the last three waves of the COVID-19 pandemic, we achieved a 56% ICU and a 50% hospital survival rate at our low volume centre.

18.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069441

RESUMO

Following the in vivo biodistribution of platelets can contribute to a better understanding of their physiological and pathological roles, and nuclear imaging methods, such as single photon emission tomography (SPECT), provide an excellent method for that. SPECT imaging needs stable labeling of the platelets with a radioisotope. In this study, we report a new method to label platelets with 99mTc, the most frequently used isotope for SPECT in clinical applications. The proposed radiolabeling procedure uses a membrane-binding peptide, duramycin. Our results show that duramycin does not cause significant platelet activation, and radiolabeling can be carried out with a procedure utilizing a simple labeling step followed by a size-exclusion chromatography-based purification step. The in vivo application of the radiolabeled human platelets in mice yielded quantitative biodistribution images of the spleen and liver and no accumulation in the lungs. The performed small-animal SPECT/CT in vivo imaging investigations revealed good in vivo stability of the labeling, which paves the way for further applications of 99mTc-labeled-Duramycin in platelet imaging.


Assuntos
Bacteriocinas , Tomografia Computadorizada de Emissão de Fóton Único , Camundongos , Humanos , Animais , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Peptídeos/metabolismo , Bacteriocinas/metabolismo
19.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239853

RESUMO

Duchenne muscular dystrophy (DMD) is characterized by wasting of muscles that leads to difficulty moving and premature death, mainly from heart failure. Glucocorticoids are applied in the management of the disease, supporting the hypothesis that inflammation may be driver as well as target. However, the inflammatory mechanisms during progression of cardiac and skeletal muscle dysfunction are still not well characterized. Our objective was to characterize the inflammasomes in myocardial and skeletal muscle in rodent models of DMD. Gastrocnemius and heart samples were collected from mdx mice and DMDmdx rats (3 and 9-10 months). Inflammasome sensors and effectors were assessed by immunoblotting. Histology was used to assess leukocyte infiltration and fibrosis. In gastrocnemius, a tendency towards elevation of gasdermin D irrespective of the age of the animal was observed. The adaptor protein was elevated in the mdx mouse skeletal muscle and heart. Increased cleavage of the cytokines was observed in the skeletal muscle of the DMDmdx rats. Sensor or cytokine expression was not changed in the tissue samples of the mdx mice. In conclusion, inflammatory responses are distinct between the skeletal muscle and heart in relevant models of DMD. Inflammation tends to decrease over time, supporting the clinical observations that the efficacy of anti-inflammatory therapies might be more prominent in the early stage.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Ratos , Animais , Distrofia Muscular de Duchenne/metabolismo , Inflamassomos/metabolismo , Camundongos Endogâmicos mdx , Roedores/metabolismo , Músculo Esquelético/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças
20.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203580

RESUMO

Cardiac hypertrophy resulting from sympathetic nervous system activation triggers the development of heart failure. The transcription factor Y-box binding protein 1 (YB-1) can interact with transcription factors involved in cardiac hypertrophy and may thereby interfere with the hypertrophy growth process. Therefore, the question arises as to whether YB-1 influences cardiomyocyte hypertrophy and might thereby influence the development of heart failure. YB-1 expression is downregulated in human heart biopsies of patients with ischemic cardiomyopathy (n = 8), leading to heart failure. To study the impact of reduced YB-1 in cardiac cells, we performed small interfering RNA (siRNA) experiments in H9C2 cells as well as in adult cardiomyocytes (CMs) of rats. The specificity of YB-1 siRNA was analyzed by a miRNA-like off-target prediction assay identifying potential genes. Testing three high-scoring genes by transfecting cardiac cells with YB-1 siRNA did not result in downregulation of these genes in contrast to YB-1, whose downregulation increased hypertrophic growth. Hypertrophic growth was mediated by PI3K under PE stimulation, as well by downregulation with YB-1 siRNA. On the other hand, overexpression of YB-1 in CMs, caused by infection with an adenovirus encoding YB-1 (AdYB-1), prevented hypertrophic growth under α-adrenergic stimulation with phenylephrine (PE), but not under stimulation with growth differentiation factor 15 (GDF15; n = 10-16). An adenovirus encoding the green fluorescent protein (AdGFP) served as the control. YB-1 overexpression enhanced the mRNA expression of the Gq inhibitor regulator of G-protein signaling 2 (RGS2) under PE stimulation (n = 6), potentially explaining its inhibitory effect on PE-induced hypertrophic growth. This study shows that YB-1 protects cardiomyocytes against PE-induced hypertrophic growth. Like in human end-stage heart failure, YB-1 downregulation may cause the heart to lose its protection against hypertrophic stimuli and progress to heart failure. Therefore, the transcription factor YB-1 is a pivotal signaling molecule, providing perspectives for therapeutic approaches.


Assuntos
Adrenérgicos , Insuficiência Cardíaca , Adulto , Humanos , Animais , Ratos , Fenilefrina , Insuficiência Cardíaca/genética , Miócitos Cardíacos , RNA Interferente Pequeno/genética , Adenoviridae , Cardiomegalia/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA