Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Angew Chem Int Ed Engl ; 60(33): 18295-18302, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097813

RESUMO

Redox cofactors mediate many enzymatic processes and are increasingly employed in biomedical and energy applications. Exploring the influence of external magnetic fields on redox cofactor chemistry can enhance our understanding of magnetic-field-sensitive biological processes and allow the application of magnetic fields to modulate redox reactions involving cofactors. Through a combination of experiments and modeling, we investigate the influence of magnetic fields on electrochemical reactions in redox cofactor solutions. By employing flavin mononucleotide (FMN) cofactor as a model system, we characterize magnetically induced changes in Faradaic currents. We find that radical pair intermediates have negligible influence on current increases in FMN solution upon application of a magnetic field. The dominant mechanism underlying the observed current increases is the magneto-hydrodynamic effect. We extend our analyses to other diffusion-limited electrochemical reactions of redox cofactor solutions and arrive at similar conclusions, highlighting the opportunity to use this framework in redox cofactor chemistry.


Assuntos
Técnicas Eletroquímicas , Mononucleotídeo de Flavina/química , Hidrodinâmica , Campos Magnéticos , Oxirredução , Soluções
2.
Adv Funct Mater ; 30(36)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35531589

RESUMO

Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, we motivate and demonstrate an extension of this concept, magnetothermal multiplexing, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling in vitro.

6.
Adv Mater ; 36(3): e2305106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039437

RESUMO

Polar dielectrics are key materials of interest for infrared (IR) nanophotonic applications due to their ability to host phonon-polaritons that allow for low-loss, subdiffractional control of light. The properties of phonon-polaritons are limited by the characteristics of optical phonons, which are nominally fixed for most "bulk" materials. Superlattices composed of alternating atomically thin materials offer control over crystal anisotropy through changes in composition, optical phonon confinement, and the emergence of new modes. In particular, the modified optical phonons in superlattices offer the potential for so-called crystalline hybrids whose IR properties cannot be described as a simple mixture of the bulk constituents. To date, however, studies have primarily focused on identifying the presence of new or modified optical phonon modes rather than assessing their impact on the IR response. This study focuses on assessing the impact of confined optical phonon modes on the hybrid IR dielectric function in superlattices of GaSb and AlSb. Using a combination of first principles theory, Raman, FTIR, and spectroscopic ellipsometry, the hybrid dielectric function is found to track the confinement of optical phonons, leading to optical phonon spectral shifts of up to 20 cm-1 . These results provide an alternative pathway toward designer IR optical materials.

7.
Adv Mater ; : e2401534, 2024 May 25.
Artigo em Holandês | MEDLINE | ID: mdl-38795019

RESUMO

The exploration of 1D magnetism, frequently portrayed as spin chains, constitutes an actively pursued research field that illuminates fundamental principles in many-body problems and applications in magnonics and spintronics. The inherent reduction in dimensionality often leads to robust spin fluctuations, impacting magnetic ordering and resulting in novel magnetic phenomena. Here, structural, magnetic, and optical properties of highly anisotropic 2D van der Waals antiferromagnets that uniquely host spin chains are explored. First-principle calculations reveal that the weakest interaction is interchain, leading to essentially 1D magnetic behavior in each layer. With the additional degree of freedom arising from its anisotropic structure, the structure is engineered by alloying, varying the 1D spin chain lengths using electron beam irradiation, or twisting for localized patterning, and spin textures are calculated, predicting robust stability of the antiferromagnetic ordering. Comparing with other spin chain magnets, these materials are anticipated to bring fresh perspectives on harvesting low-dimensional magnetism.

8.
Front Neurosci ; 16: 901108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837128

RESUMO

Exposure to stressful or traumatic stimuli may alter hypothalamic-pituitary-adrenal (HPA) axis and sympathoadrenal-medullary (SAM) reactivity. This altered reactivity may be a component or cause of mental illnesses. Dissecting these mechanisms requires tools to reliably probe HPA and SAM function, particularly the adrenal component, with temporal precision. We previously demonstrated magnetic nanoparticle (MNP) technology to remotely trigger adrenal hormone release by activating thermally sensitive ion channels. Here, we applied adrenal magnetothermal stimulation to probe stress-induced HPA axis and SAM changes. MNP and control nanoparticles were injected into the adrenal glands of outbred rats subjected to a tone-shock conditioning/extinction/recall paradigm. We measured MNP-triggered adrenal release before and after conditioning through physiologic (heart rate) and serum (epinephrine, corticosterone) markers. Aversive conditioning altered adrenal function, reducing corticosterone and blunting heart rate increases post-conditioning. MNP-based organ stimulation provides a novel approach to probing the function of SAM, HPA, and other neuro-endocrine axes and could help elucidate changes across stress and disease models.

9.
Nat Commun ; 12(1): 1290, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637704

RESUMO

The atomic structure at the interface between two-dimensional (2D) and three-dimensional (3D) materials influences properties such as contact resistance, photo-response, and high-frequency electrical performance. Moiré engineering is yet to be utilized for tailoring this 2D/3D interface, despite its success in enabling correlated physics at 2D/2D interfaces. Using epitaxially aligned MoS2/Au{111} as a model system, we demonstrate the use of advanced scanning transmission electron microscopy (STEM) combined with a geometric convolution technique in imaging the crystallographic 32 Å moiré pattern at the 2D/3D interface. This moiré period is often hidden in conventional electron microscopy, where the Au structure is seen in projection. We show, via ab initio electronic structure calculations, that charge density is modulated according to the moiré period, illustrating the potential for (opto-)electronic moiré engineering at the 2D/3D interface. Our work presents a general pathway to directly image periodic modulation at interfaces using this combination of emerging microscopy techniques.

10.
Sci Adv ; 7(38): eabi6699, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524846

RESUMO

The three-dimensional (3D) local atomic structures and crystal defects at the interfaces of heterostructures control their electronic, magnetic, optical, catalytic, and topological quantum properties but have thus far eluded any direct experimental determination. Here, we use atomic electron tomography to determine the 3D local atomic positions at the interface of a MoS2-WSe2 heterojunction with picometer precision and correlate 3D atomic defects with localized vibrational properties at the epitaxial interface. We observe point defects, bond distortion, and atomic-scale ripples and measure the full 3D strain tensor at the heterointerface. By using the experimental 3D atomic coordinates as direct input to first-principles calculations, we reveal new phonon modes localized at the interface, which are corroborated by spatially resolved electron energy-loss spectroscopy. We expect that this work will pave the way for correlating structure-property relationships of a wide range of heterostructure interfaces at the single-atom level.

11.
Nat Commun ; 12(1): 4799, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376659

RESUMO

As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohm's law. Depending on the length scales of momentum conserving (lMC) and relaxing (lMR) electron scattering, and the device size (d), current flows may shift from ohmic to ballistic to hydrodynamic regimes. So far, an in situ methodology to obtain these parameters within a micro/nanodevice is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain lMR even when lMR ≫ d. We extract lMR from the Sondheimer amplitude in WP2, at temperatures up to T ~ 40 K, a range most relevant for hydrodynamic transport phenomena. Our data on µm-sized devices are in excellent agreement with experimental reports of the bulk lMR and confirm that WP2 can be microfabricated without degradation. These results conclusively establish Sondheimer oscillations as a quantitative probe of lMR in micro-devices.

12.
Nat Commun ; 11(1): 4710, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948760

RESUMO

Rotational invariance strongly constrains the viscosity tensor of classical fluids. When this symmetry is broken in anisotropic materials a wide array of novel phenomena become possible. We explore electron fluid behaviors arising from the most general viscosity tensors in two and three dimensions, constrained only thermodynamics and crystal symmetries. We find nontrivial behaviors in both two- and three-dimensional materials, including imprints of the crystal symmetry on the large-scale flow pattern. Breaking time-reversal symmetry introduces a non-dissipative Hall component to the viscosity tensor, and while this vanishes for 3D isotropic systems we show it need not for anisotropic materials. Further, for such systems we find that the electronic fluid stress can couple to the vorticity without breaking time-reversal symmetry. Our work demonstrates the anomalous landscape for electron hydrodynamics in systems beyond graphene, and presents experimental geometries to quantify the effects of electronic viscosity.

13.
Sci Adv ; 6(15): eaaz3734, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32300655

RESUMO

The field of bioelectronic medicines seeks to modulate electrical signaling within peripheral organs, providing temporally precise control of physiological functions. This is usually accomplished with implantable devices, which are often unsuitable for interfacing with soft and highly vascularized organs. Here, we demonstrate an alternative strategy for modulating peripheral organ function, which relies on the endogenous expression of a heat-sensitive cation channel, transient receptor potential vanilloid family member 1 (TRPV1), and heat dissipation by magnetic nanoparticles (MNPs) in remotely applied alternating magnetic fields. We use this approach to wirelessly control adrenal hormone secretion in genetically intact rats. TRPV1-dependent calcium influx into the cells of adrenal cortex and medulla is sufficient to drive rapid release of corticosterone and (nor)epinephrine. As altered levels of these hormones have been correlated with mental conditions such as posttraumatic stress disorder and major depression, our approach may facilitate the investigation of physiological and psychological impacts of stress.


Assuntos
Corticosteroides/genética , Glândulas Suprarrenais/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Corticosteroides/metabolismo , Glândulas Suprarrenais/citologia , Animais , Cálcio/metabolismo , Células Cultivadas , Temperatura Alta , Campos Magnéticos , Ratos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Transfecção , Transgenes
14.
ACS Nano ; 14(7): 8036-8045, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32559057

RESUMO

Magnetic nanomaterials in magnetic fields can serve as versatile transducers for remote interrogation of cell functions. In this study, we leveraged the transition from vortex to in-plane magnetization in iron oxide nanodiscs to modulate the activity of mechanosensory cells. When a vortex configuration of spins is present in magnetic nanomaterials, it enables rapid control over their magnetization direction and magnitude. The vortex configuration manifests in near zero net magnetic moment in the absence of a magnetic field, affording greater colloidal stability of magnetic nanomaterials in suspensions. Together, these properties invite the application of magnetic vortex particles as transducers of externally applied minimally invasive magnetic stimuli in biological systems. Using magnetic modeling and electron holography, we predict and experimentally demonstrate magnetic vortex states in an array of colloidally synthesized magnetite nanodiscs 98-226 nm in diameter. The magnetic nanodiscs applied as transducers of torque for remote control of mechanosensory neurons demonstrated the ability to trigger Ca2+ influx in weak (≤28 mT), slowly varying (≤5 Hz) magnetic fields. The extent of cellular response was determined by the magnetic nanodisc volume and magnetic field conditions. Magnetomechanical activation of a mechanosensitive cation channel TRPV4 (transient receptor potential vanilloid family member 4) exogenously expressed in the nonmechanosensitive HEK293 cells corroborated that the stimulation is mediated by mechanosensitive ion channels. With their large magnetic torques and colloidal stability, magnetic vortex particles may facilitate basic studies of mechanoreception and its applications to control electroactive cells with remote magnetic stimuli.


Assuntos
Campos Magnéticos , Neurônios , Células HEK293 , Humanos
15.
Science ; 365(6449): 145-150, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31296764

RESUMO

Artificial muscles may accelerate the development of robotics, haptics, and prosthetics. Although advances in polymer-based actuators have delivered unprecedented strengths, producing these devices at scale with tunable dimensions remains a challenge. We applied a high-throughput iterative fiber-drawing technique to create strain-programmable artificial muscles with dimensions spanning three orders of magnitude. These fiber-based actuators are thermally and optically controllable, can lift more than 650 times their own weight, and withstand strains of >1000%. Integration of conductive nanowire meshes within these fiber-based muscles offers piezoresistive strain feedback and demonstrates long-term resilience across >105 deformation cycles. The scalable dimensions of these fiber-based actuators and their strength and responsiveness may extend their impact from engineering fields to biomedical applications.


Assuntos
Órgãos Artificiais , Engenharia Biomédica , Fibra de Carbono/química , Fibras Musculares Esqueléticas/química , Polimetil Metacrilato/química , Próteses e Implantes , Robótica
16.
Nat Nanotechnol ; 14(10): 967-973, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31427746

RESUMO

Connecting neural circuit output to behaviour can be facilitated by the precise chemical manipulation of specific cell populations1,2. Engineered receptors exclusively activated by designer small molecules enable manipulation of specific neural pathways3,4. However, their application to studies of behaviour has thus far been hampered by a trade-off between the low temporal resolution of systemic injection versus the invasiveness of implanted cannulae or infusion pumps2. Here, we developed a remotely controlled chemomagnetic modulation-a nanomaterials-based technique that permits the pharmacological interrogation of targeted neural populations in freely moving subjects. The heat dissipated by magnetic nanoparticles (MNPs) in the presence of alternating magnetic fields (AMFs) triggers small-molecule release from thermally sensitive lipid vesicles with a 20 s latency. Coupled with the chemogenetic activation of engineered receptors, this technique permits the control of specific neurons with temporal and spatial precision. The delivery of chemomagnetic particles to the ventral tegmental area (VTA) allows the remote modulation of motivated behaviour in mice. Furthermore, this chemomagnetic approach activates endogenous circuits by enabling the regulated release of receptor ligands. Applied to an endogenous dopamine receptor D1 (DRD1) agonist in the nucleus accumbens (NAc), a brain area involved in mediating social interactions, chemomagnetic modulation increases sociability in mice. By offering a temporally precise control of specified ligand-receptor interactions in neurons, this approach may facilitate molecular neuroscience studies in behaving organisms.


Assuntos
Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Rede Nervosa/efeitos dos fármacos , Neurotransmissores/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Lipossomos/química , Campos Magnéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiologia , Neurotransmissores/farmacologia , Ratos , Temperatura , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA