Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(13)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33758098

RESUMO

Spontaneous condensation of excitons is a long-sought phenomenon analogous to the condensation of Cooper pairs in a superconductor. It is expected to occur in a semiconductor at thermodynamic equilibrium if the binding energy of the excitons-electron (e) and hole (h) pairs interacting by Coulomb force-overcomes the band gap, giving rise to a new phase: the "excitonic insulator" (EI). Transition metal dichalcogenides are excellent candidates for the EI realization because of reduced Coulomb screening, and indeed a structural phase transition was observed in few-layer systems. However, previous work could not disentangle to which extent the origin of the transition was in the formation of bound excitons or in the softening of a phonon. Here we focus on bulk [Formula: see text] and demonstrate theoretically that at high pressure it is prone to the condensation of genuine excitons of finite momentum, whereas the phonon dispersion remains regular. Starting from first-principles many-body perturbation theory, we also predict that the self-consistent electronic charge density of the EI sustains an out-of-plane permanent electric dipole moment with an antiferroelectric texture in the layer plane: At the onset of the EI phase, those optical phonons that share the exciton momentum provide a unique Raman fingerprint for the EI formation. Finally, we identify such fingerprint in a Raman feature that was previously observed experimentally, thus providing direct spectroscopic confirmation of an ideal excitonic insulator phase in bulk [Formula: see text] above 30 GPa.

2.
Nano Lett ; 23(24): 11835-11841, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38088831

RESUMO

In this work, we perform electron energy-loss spectroscopy (EELS) of freestanding graphene with high energy and momentum resolution to disentangle the quasielastic scattering from the excitation gap of Dirac electrons close to the optical limit. We show the importance of many-body effects on electronic excitations at finite transferred momentum by comparing measured EELS to ab initio calculations at increasing levels of theory. Quasi-particle corrections and excitonic effects are addressed within the GW approximation and the Bethe-Salpeter equation, respectively. Both effects are essential in the description of the EEL spectra to obtain a quantitative agreement with experiments, with the position, dispersion, and shape of both the excitation gap and the π plasmon being significantly affected by excitonic effects.

3.
Phys Rev Lett ; 131(20): 206902, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039447

RESUMO

Despite its simple crystal structure, layered boron nitride features a surprisingly complex variety of phonon-assisted luminescence peaks. We present a combined experimental and theoretical study on ultraviolet-light emission in hexagonal and rhombohedral bulk boron nitride crystals. Emission spectra of high-quality samples are measured via cathodoluminescence spectroscopy, displaying characteristic differences between the two polytypes. These differences are explained using a fully first-principles computational technique that takes into account radiative emission from "indirect," finite-momentum excitons via coupling to finite-momentum phonons. We show that the differences in peak positions, number of peaks, and relative intensities can be qualitatively and quantitatively explained, once a full integration over all relevant momenta of excitons and phonons is performed.

4.
Phys Chem Chem Phys ; 22(44): 25593-25605, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33164017

RESUMO

We combine density functional theory and many body perturbation theory to investigate the electronic properties of Si(100) and Ge(100) surfaces terminated with halogen atoms (-I, -Br, -Cl, -F) and other chemical functionalizations (-H, -OH, -CH3) addressing the absolute values of their work function, electronic affinity and ionization potential. Our results point out that electronic properties of functionalized surfaces strongly depend on the chemisorbed species and much less on the surface crystal orientation. The presence of halogens at the surface always leads to an increment of the work function, ionization potential and electronic affinity with respect to fully hydrogenated surfaces. On the contrary, the presence of polar -OH and -CH3 groups at the surface leads to a reduction of the aforementioned quantities with respect to the H-terminated system. Starting from the work functions calculated for the Si and Ge passivated surfaces, we apply a simple model to estimate the properties of functionalized SiGe surfaces. The possibility of modulating the work function by changing the chemisorbed species and composition is predicted. The effects induced by different terminations on the band energy line-up profile of SiGe surfaces are then analyzed. Interestingly, our calculations predict a type-II band offset for the H-terminated systems and a type-I band offset for the other cases.

5.
J Chem Phys ; 153(21): 214703, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291906

RESUMO

The dispersion of the electronic states of epitaxial graphene (Gr) depends significantly on the strength of the bonding with the underlying substrate. We report on empty electron states in cobalt-intercalated Gr grown on Ir(111), studied by angle-resolved inverse photoemission spectroscopy and x-ray absorption spectroscopy, complemented with density functional theory calculations. The weakly bonded Gr on Ir preserves the peculiar spectroscopic features of the Gr band structure, and the empty spectral densities are almost unperturbed. Upon intercalation of a Co layer, the electronic response of the interface changes, with an intermixing of the Gr π* bands and Co d states, which breaks the symmetry of π/σ states, and a downshift of the upper part of the Gr Dirac cone. Similarly, the image potential of Ir(111) is unaltered by the Gr layer, while a downward shift is induced upon Co intercalation, as unveiled by the image state energy dispersion mapped in a large region of the surface Brillouin zone.

6.
Nano Lett ; 18(4): 2268-2273, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29558616

RESUMO

We report an advanced organic spin-interface architecture with magnetic remanence at room temperature, constituted by metal phthalocyanine molecules magnetically coupled with Co layer(s), mediated by graphene. Fe- and Cu-phthalocyanines assembled on graphene/Co have identical structural configurations, but FePc couples antiferromagnetically with Co up to room temperature, while CuPc couples ferromagnetically with weaker coupling and thermal stability, as deduced by element-selective X-ray magnetic circular dichroic signals. The robust antiferromagnetic coupling is stabilized by a superexchange interaction, driven by the out-of-plane molecular orbitals responsible of the magnetic ground state and electronically decoupled from the underlying metal via the graphene layer, as confirmed by ab initio theoretical predictions. These archetypal spin interfaces can be prototypes to demonstrate how antiferromagnetic and/or ferromagnetic coupling can be optimized by selecting the molecular orbital symmetry.

7.
Phys Rev Lett ; 121(12): 127704, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296145

RESUMO

Carbon nanotubes continue to be model systems for studies of confinement and interactions. This is particularly true in the case of so-called "ultraclean" carbon nanotube devices offering the study of quantum dots with extremely low disorder. The quality of such systems, however, has increasingly revealed glaring discrepancies between experiment and theory. Here, we address the outstanding anomaly of exceptionally large orbital magnetic moments in carbon nanotube quantum dots. We perform low temperature magnetotransport measurements of the orbital magnetic moment and find it is up to 7 times larger than expected from the conventional semiclassical model. Moreover, the magnitude of the magnetic moment monotonically drops with the addition of each electron to the quantum dot directly contradicting the widely accepted shell filling picture of single-particle levels. We carry out quasiparticle calculations, both from first principles and within the effective-mass approximation, and find the giant magnetic moments can only be captured by considering a self-energy correction to the electronic band structure due to electron-electron interactions.

8.
J Chem Phys ; 140(5): 054102, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24511917

RESUMO

In this work we show the possibility to extract Kohn-Sham orbitals, orbital energies, and exchange correlation potentials from accurate Quantum Monte Carlo (QMC) densities for atoms (He, Be, Ne) and molecules (H2, Be2, H2O, and C2H4). The Variational Monte Carlo (VMC) densities based on accurate Jastrow Antisymmetrised Geminal Power wave functions are calculated through different estimators. Using these reference densities, we extract the Kohn-Sham quantities with the method developed by Zhao, Morrison, and Parr (ZMP) [Phys. Rev. A 50, 2138 (1994)]. We compare these extracted quantities with those obtained form CISD densities and with other data reported in the literature, finding a good agreement between VMC and other high-level quantum chemistry methods. Our results demonstrate the applicability of the ZMP procedure to QMC molecular densities, that can be used for the testing and development of improved functionals and for the implementation of embedding schemes based on QMC and Density Functional Theory.

9.
J Chem Theory Comput ; 20(11): 4718-4737, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38772396

RESUMO

The time-dependent Hartree-Fock (TDHF) vertex of many-body perturbation theory (MBPT) makes it possible to extend TDHF theory to charged excitations. Here we assess its performance by applying it to spherical atoms in their neutral electronic configuration. On a theoretical level, we recast the TDHF vertex as a reducible vertex, highlighting the emergence of a self-energy expansion purely in orders of the bare Coulomb interaction; then, on a numerical level, we present results for polarizabilities, ionization energies (IEs), and photoemission satellites. We confirm the superiority of THDF over simpler methods such as the random phase approximation for the prediction of atomic polarizabilities. We then find that the TDHF vertex reliably provides better IEs than GW and low-order self-energies do in the light-atom, few-electron regime; its performance degrades in heavier, many-electron atoms instead, where an expansion in orders of an unscreened Coulomb interaction becomes less justified. New relevant features are introduced in the satellite spectrum by the TDHF vertex, but the experimental spectra are not fully reproduced due to a missing account of nonlinear effects connected to hole relaxation. We also explore various truncations of the self-energy given by the TDHF vertex, but do not find them to be more convenient than low-order approximations such as GW and second Born (2B), suggesting that vertex corrections should be carried out consistently both in the self-energy and in the polarizability.

10.
Nat Commun ; 13(1): 2667, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562345

RESUMO

The competition between the electron-hole Coulomb attraction and the 3D dielectric screening dictates the optical properties of layered semiconductors. In low-dimensional materials, the equilibrium dielectric environment can be significantly altered by the ultrafast excitation of photo-carriers, leading to renormalized band gap and exciton binding energies. Recently, black phosphorus emerged as a 2D material with strongly layer-dependent electronic properties. Here, we resolve the response of bulk black phosphorus to mid-infrared pulses tuned across the band gap. We find that, while above-gap excitation leads to a broadband light-induced transparency, sub-gap pulses drive an anomalous response, peaked at the single-layer exciton resonance. With the support of DFT calculations, we tentatively ascribe this experimental evidence to a non-adiabatic modification of the screening environment. Our work heralds the non-adiabatic optical manipulation of the electronic properties of 2D materials, which is of great relevance for the engineering of versatile van der Waals materials.

11.
J Am Chem Soc ; 133(39): 15425-33, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21905678

RESUMO

The optical properties of the flavylium state of the cyanin dye are simulated numerically by combining Car-Parrinello molecular dynamics and linear-response time-dependent density functional theory calculations. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the yellow and in the blue (green and violet), using a GGA-PBE (hybrid-B3LYP) DFT functional, which would bring about a greenish (bright orange) color incompatible with the dark purple hue observed in nature. Describing the effect of the water solvent through a polarizable continuum model does not modify qualitatively the resulting picture. An explicit simulation of both solvent and thermal effects using ab initio molecular dynamics results instead in a spectrum that is compatible with the observed coloration. This result is analyzed in terms of the spectroscopic effects of the molecular distortions induced by thermal fluctuations.


Assuntos
Antocianinas/química , Corantes/química , Fenômenos Ópticos , Solventes/química , Temperatura , Água/química , Impedância Elétrica , Gases/química , Conformação Molecular , Simulação de Dinâmica Molecular , Teoria Quântica
12.
Nat Nanotechnol ; 15(5): 367-372, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32123382

RESUMO

Monolayer transition-metal dichalcogenides in the T' phase could enable the realization of the quantum spin Hall effect1 at room temperature, because they exhibit a prominent spin-orbit gap between inverted bands in the bulk2,3. Here we show that the binding energy of electron-hole pairs excited through this gap is larger than the gap itself in the paradigmatic case of monolayer T' MoS2, which we investigate from first principles using many-body perturbation theory4. This paradoxical result hints at the instability of the T' phase in the presence of spontaneous generation of excitons, and we predict that it will give rise to a reconstructed 'excitonic insulator' ground state5-7. Importantly, we show that in this monolayer system, topological and excitonic order cooperatively enhance the bulk gap by breaking the crystal inversion symmetry, in contrast to the case of bilayers8-16 where the frustration between the two orders is relieved by breaking time reversal symmetry13,15,16. The excitonic topological insulator is distinct from the bare topological phase because it lifts the band spin degeneracy, which results in circular dichroism. A moderate biaxial strain applied to the system leads to two additional excitonic phases, different in their topological character but both ferroelectric17,18 as an effect of electron-electron interaction.

13.
J Phys Chem B ; 113(28): 9402-15, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19537767

RESUMO

Hole transfer processes between base pairs in natural DNA and size-expanded DNA (xDNA) are studied and compared, by means of an accurate first principles evaluation of the effective electronic couplings (also known as transfer integrals), in order to assess the effect of the base augmentation on the efficiency of charge transport through double-stranded DNA. According to our results, the size expansion increases the average electronic coupling, and thus the CT rate, with potential implications in molecular biology and in the implementation of molecular nanoelectronics. Our analysis shows that the effect of the nucleobase expansion on the charge-transfer (CT) rate is sensitive to the sequence of base pairs. Furthermore, we find that conformational variability is an important factor for the modulation of the CT rate. From a theoretical point of view, this work offers a contribution to the CT chemistry in pi-stacked arrays. Indeed, we compare our methodology against other standard computational frameworks that have been adopted to tackle the problem of CT in DNA, and unravel basic principles that should be accounted for in selecting an appropriate theoretical level.


Assuntos
Pareamento de Bases , DNA/química , Simulação por Computador , Dimerização , Elétrons , Modelos Moleculares , Conformação de Ácido Nucleico , Teoria Quântica , Eletricidade Estática
14.
J Phys Chem B ; 113(28): 9614-9, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19537699

RESUMO

Synchrotron radiation circular dichroism (SRCD) spectra were recorded for a family of 12 DNA duplexes that all contain nine adenines (A) and nine thymines (T) in each strand but in different combinations. The total number of AT Watson-Crick (WC) base pairs is constant (18), but the number of cross-strand (CS) hydrogen bonds between A and T varies between 0 and 16, the maximum possible. Eleven of the duplexes have one or more A tracts, and one duplex has T tracts. The signals due to hybridization were found from subtraction of spectra of single strands from spectra of the duplexes. The residual spectrum of the T-tract duplex T(9)A(9):A(9)T(9) (5'-3':3'-5') significantly differs from that of the A-tract duplex A(9)T(9):T(9)A(9), but only below 210 nm, which suggests that the signal in this region depends on the superhelicity of the duplex. A principal component analysis of all residual spectra reveals that spectra of A-tract duplexes can be obtained to a good approximation as a linear combination of just two basis spectra. The first component is assigned to the spectrum of 18 WC and 8 CS pairs, whereas the second component is that of 8 CS pairs. This interpretation is supported by separate experiments on duplexes of varying lengths but with similar arrangements of the A and T's and by experiments on two other duplex families of 14 and 30 base pairs. The best correlation is obtained by the assumption that cross-strand interactions occur as long as there are two adenine neighbors in a strand. Our data indicate that a circular dichroism spectrum of a duplex containing only A and T can simply be inferred from the number of WC base pairs and the number of CS interactions, and we provide reference spectra for these two interactions. Finally, time dependent density functional theory calculations of the circular dichroism spectra for an isolated WC base pair and two different CS base pairs (between adenine N-6 amine and thymine O-4 or between adenine C-2-H and thymine O-2) were performed to provide some additional support for the interpretation of the experimental spectra. We find large differences between the two calculated CS spectra. However, there is a reasonable qualitative agreement between the calculated WC and the C-2-H...O-2 CS spectra and those deduced from the experimental data.


Assuntos
Adenina/química , Dicroísmo Circular , DNA/química , Timina/química , Pareamento de Bases , Simulação por Computador , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Teoria Quântica
15.
J Chem Theory Comput ; 15(5): 3197-3203, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30986064

RESUMO

The definition of plasmon at the microscopic scale is far from being understood. Yet, it is very important to recognize plasmonic features in optical excitations, as they can inspire new applications and trigger new discoveries by analogy with the rich phenomenology of metal nanoparticle plasmons. Recently, the concepts of plasmonicity index and the generalized plasmonicity index (GPI) have been devised as computational tools to quantify the plasmonic nature of optical excitations. The question may arise whether any strong absorption band, possibly with some sort of collective character in its microscopic origin, shares the status of plasmon. Here we demonstrate that this is not always the case, by considering a well-known class of systems represented by J-aggregates molecular crystals, characterized by the intense J band of absorption. By means of first-principles simulations, based on a many-body perturbation theory formalism, we investigate the optical properties of a J-aggregate made of push-pull organic dyes. We show that the effect of aggregation is to lower the GPI associated with the J-band with respect to the isolated dye one, which corresponds to a nonplasmonic character of the electronic excitations. In order to rationalize our finding, we then propose a simplified one-dimensional theoretical model of the J-aggregate. A useful microscopic picture of what discriminates a collective molecular crystal excitation from a plasmon is eventually obtained.

16.
J Phys Chem C Nanomater Interfaces ; 123(11): 6831-6838, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30949274

RESUMO

In a first-principles study based on density functional theory and many-body perturbation theory, we address the interplay between intra- and intermolecular interactions in a J-aggregate formed by push-pull organic dyes by investigating its electronic and optical properties. We find that the most intense excitation dominating the spectral onset of the aggregate, i.e., the J-band, exhibits a combination of intramolecular charge transfer, coming from the push-pull character of the constituting dyes, and intermolecular charge transfer, due to the dense molecular packing. We also show the presence of a pure intermolecular charge-transfer excitation within the J-band, which is expected to play a relevant role in the emission properties of the J-aggregate. Our results shed light on the microscopic character of optical excitations of J-aggregates and offer new perspectives to further understand the nature of collective excitations in organic semiconductors.

17.
J Phys Chem B ; 111(50): 14012-21, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18034470

RESUMO

We present the results of time-dependent density functional theory calculations of the optical absorption spectra of synthetic nucleobases and of their hydrogen-bonded and stacked base pairs. We focus on size-expanded analogues of the natural nucleobases obtained through the insertion of a benzene ring bonded to the planar heterocycles (x-bases), according to the protocol designed and realized by the group of Eric Kool (e.g., see: Gao, J.; Liu, H.; Kool, E.T. Angew. Chem., Int. Ed. 2005, 44, 3118, and references therein). We find that the modifications of the frontier electron orbitals with respect to natural bases, which are induced by the presence of the aromatic ring, also affect the optical response. In particular, the absorption onset is pinned by the benzene component of the HOMO of each x-base (xA, xG, xT, xC). In addition, the main trait of the H-bonding interbase coupling is a conspicuous red shift of spectral peaks in the low-energy range. Finally, the hypochromicity, a well-known fingerprint of stacking, is more pronounced in stacked xG-C and xA-T pairs than that in stacked G-C and A-T pairs, an index of enhanced stacking.


Assuntos
DNA/química , Biologia Computacional , Gases/química , Ligação de Hidrogênio , Modelos Moleculares , Espectrofotometria
18.
J Chem Theory Comput ; 13(9): 4357-4367, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28753277

RESUMO

The structures of three negatively charged forms (anionic keto-1 and enol-1 and dianionic enol-2) of oxyluciferin (OxyLuc), which are the most probable emitters responsible for the firefly bioluminescence, have been fully relaxed at the variational Monte Carlo (VMC) level. Absorption energies of the S1 ← S0 vertical transition have been computed using different levels of theory, such as TDDFT, CC2, and many-body Green's function theory (MBGFT). The use of MBGFT, by means of the Bethe-Salpeter (BS) formalism, on VMC structures provides results in excellent agreement with the value (2.26(8) eV) obtained by action spectroscopy experiments for the keto-1 form (2.32 eV). To unravel the role of the quality of the optimized ground-state geometry, BS excitation energies have also been computed on CASSCF geometries, inducing a non-negligible blue shift (0.08 and 0.07 eV for keto-1 and enol-1 forms, respectively) with respect to the VMC ones. Structural effects have been analyzed in terms of over- or undercorrelation along the conjugated bonds of OxyLuc by using different methods for the ground-state optimization. The relative stability of the S1 state for the keto-1 and enol-1 forms depends on the method chosen for the excited-state calculation, thus representing a fundamental caveat for any theoretical study on these systems. Finally, Kohn-Sham HOMO and LUMO orbitals of enol-2 are (nearly) bound only when the dianion is embedded into a solvent (water and toluene in the present work); excited-state calculations are therefore meaningful only in the presence of a dielectric medium which localizes the electronic density. The combination of VMC for the ground-state geometry and BS formalism for the absorption spectra clearly outperforms standard TDDFT and quantum chemistry approaches.

19.
J Phys Condens Matter ; 29(1): 013002, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27830666

RESUMO

Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.


Assuntos
Transferência de Energia , Proteínas de Fluorescência Verde , Fotoquímica , Elétrons , Fotossíntese , Teoria Quântica , Água/química
20.
J Phys Chem Lett ; 8(16): 3867-3873, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28766332

RESUMO

Despite most of the applications of anatase nanostructures rely on photoexcited charge processes, yet profound theoretical understanding of fundamental related properties is lacking. Here, by means of ab initio ground and excited-state calculations, we reveal, in an unambiguous way, the role of quantum confinement effect and of the surface orientation, on the electronic and optical properties of anatase nanosheets (NSs). The presence of bound excitons extremely localized along the (001) direction, whose existence has been recently proven also in anatase bulk, explains the different optical behavior found for the two orientations - (001) and (101) - when the NS thickness increases. We suggest also that the almost two-dimensional nature of these excitons can be related to the improved photoconversion efficiency observed when a high percentage of (001) facet is present in anatase nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA