Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063114

RESUMO

The aim of this study was to examine the use of zwitterionic microparticles as new and efficient macromolecular supports for the sorption of an antibiotic (doxycycline hydrochloride, DCH) from aqueous solution. The effect of relevant process parameters of sorption, like dosage of microparticles, pH value, contact time, the initial concentration of drug and temperature, was evaluated to obtain the optimal experimental conditions. The sorption kinetics were investigated using Lagergren, Ho, Elovich and Weber-Morris models, respectively. The sorption efficiency was characterized by applying the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) show that the sorption of doxycycline hydrochloride onto zwitterionic microparticles is endothermic, spontaneous and favorable at higher temperatures. The maximum identified sorption capacity value is 157.860 mg/g at 308 K. The Higuchi, Korsmeyer-Peppas, Baker-Lonsdale and Kopcha models are used to describe the release studies. In vitro release studies show that the release mechanism of doxycycline hydrochloride from zwitterionic microparticles is predominantly anomalous or non-Fickian diffusion. This study could provide the opportunity to expand the use of these new zwitterionic structures in medicine and water purification.


Assuntos
Betaína , Doxiciclina , Doxiciclina/química , Betaína/química , Cinética , Adsorção , Termodinâmica , Concentração de Íons de Hidrogênio , Antibacterianos/química , Liberação Controlada de Fármacos , Temperatura , Microesferas
2.
Biomacromolecules ; 23(1): 89-99, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34965089

RESUMO

Herein, we report a simple method to obtain hydrophobic surfaces by surface modification with calcium carbonate via diffusion-controlled crystallization using a cheap, versatile, and super-hydrophilic cellulose-based nonwoven material (NWM) as the substrate. To control the CaCO3 crystal growth, the ammonium carbonate diffusion method was applied in the presence of polyanions [poly(acid acrylic), poly(2-acrylamido-2-methylpropanesulfonic acid), and a copolymer which contains 55 mol % 2-acrylamido-2-methylpropanesulfonic acid and 45 mol % acrylic acid] or nonstoichiometric polyelectrolyte complexes with polycations [poly(allylamine hydrochloride) and chitosan] on a pristine NWM and on polycation-treated surfaces. The surface morphology obtained by calcite growth under surface or environmental functional groups' influence and the hydrophilic/hydrophobic character of the composite materials were followed and compared to that of the starting material. The obtained composite materials become hydrophobic, having a contact angle in the range of 110-135°. The capacity of tetracycline sorption and release by selected modified surfaces were followed and compared to the untreated NWM. Also, the biological properties were evaluated in terms of biocompatibility, antibacterial activity, and antifouling capability.


Assuntos
Celulose , Polímeros , Carbonato de Cálcio/química , Celulose/química , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química
3.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499328

RESUMO

Crosslinked porous microparticles have received great attention as drug delivery systems lately due to their unique set of properties: the capability to form various polymer-drug combinations, low immunogenicity, patient compliance and ability to release drugs in a delayed or controlled manner. Moreover, polymers with betaine groups have shown some unique features such as antifouling, antimicrobial activity, biocompatibility and strong hydration properties. Herein, novel porous zwitterionic microparticles were prepared in two stages. The first step involves the synthesis of porous microparticles based on glycidyl methacrylate, N-vinylimidazole and triethyleneglycol dimethacrylate using the suspension polymerization technique, the second step being the synthesis of zwitterionic porous microparticles by polymer-analogous reaction in presence of sodium monochloroacetate as betainization agent. Both types of microparticles were characterized structurally and morphologically by FT-IR spectroscopy, energy dispersive X-ray analysis, scanning electron microscopy, dynamic vapors sorption and mercury porosimetry. The tetracycline loading into crosslinked and zwitterionic microparticles was also performed, the maximum tetracycline loading capacities being 87 mg/g and 135 mg/g, respectively. The drug release mechanism, elucidated by various mathematical models, is controlled by both diffusion and swelling processes as a function of the zwitterionic and/or porous microparticle structure. Both types of microparticles presented antibacterial activity against the two reference strains used in this study: Escherichia coli and Staphylococcus aureus.


Assuntos
Sistemas de Liberação de Medicamentos , Metacrilatos , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Metacrilatos/química , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Preparações Farmacêuticas , Tamanho da Partícula
4.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768973

RESUMO

Non-thermal plasma activated water (PAW) has recently emerged as a powerful antimicrobial agent. Despite numerous potential bio-medical applications, studies concerning toxicity in live animals, especially after long-term exposure, are scarce. Our study aimed to assess the effects of long-term watering with PAW on the health of CD1 mice. PAW was prepared from distilled water with a GlidArc reactor according to a previously published protocol. The pH was 2.78. The mice received PAW (experimental group) or tap water (control group) daily for 90 days as the sole water source. After 90 days, the following investigations were performed on the euthanatized animals: gross necropsy, teeth mineral composition, histopathology, immunohistochemistry, hematology, blood biochemistry, methemoglobin level and cytokine profile. Mice tolerated PAW very well and no adverse effects were observed during the entire period of the experiment. Histopathological examination of the organs and tissues did not reveal any structural changes. Moreover, the expression of proliferation markers PCNA and Ki67 has not been identified in the epithelium of the upper digestive tract, indicating the absence of any pre- or neoplastic transformations. The results of our study demonstrated that long-term exposure to PAW caused no toxic effects and could be used as oral antiseptic solution in dental medicine.


Assuntos
Anti-Infecciosos/toxicidade , Gases em Plasma/toxicidade , Administração Oral , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos Locais/administração & dosagem , Anti-Infecciosos Locais/toxicidade , Biomarcadores/sangue , Biomarcadores/metabolismo , Citocinas/metabolismo , Assistência Odontológica/métodos , Humanos , Antígeno Ki-67/metabolismo , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Gases em Plasma/administração & dosagem , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fatores de Tempo , Dente/química , Dente/efeitos dos fármacos , Dente/ultraestrutura , Água/administração & dosagem
5.
Nanomaterials (Basel) ; 14(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251161

RESUMO

Characterization of zein aqueous solutions, as a function of the ethanol content and pH, was performed, giving information on the zein aggregation state for the construction of complexes. The aggregation state and surface charge of zein was found to depend on the mixed solvent composition and pH. Nonstoichiometric complex nanoparticles (NPECs) were prepared by electrostatically self-assembling zein, as the polycation, and sodium alginate or chondroitin sulfate, as the polyanions, at a pH of 4. A wide range of parameters were investigated: the alcohol-water content in the zein solutions, the charge molar ratios, the solution addition order and the addition rate. The resulting nanoparticles were characterized by dynamic and electrophoretic light scattering, circular dichroism and scanning electron microscopy. The smallest size for the NPECs (100 nm) was obtained when the polysaccharides acted as the titrate with an addition rate of 0.03 mL·min-1. The NPECs with the best characteristics were selected for loading with ciprofloxacin and then deposited on a cellulosic material in order to evaluate their antibacterial activity. Substantial drug encapsulation with desired drug release profiles were found together with notable antibacterial efficiency, showing the tunability of the properties for both the zein and its complexes with polysaccharides, together with their application potential in the biomedical field.

6.
Biomedicines ; 11(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37761013

RESUMO

Dental composites, through their structural diversity, represent the biomaterials frequently used in dental reconstructive therapy. The aim of our study was to observe the influence of different beverage environment conditions on seven types of obturation dental materials with different compositions. Our research focused on the surface modification analysis of the materials after the immersion in the different beverages; in this regard, we used the EDAX technique correlated with the energy-dispersive X-ray fluorescence (XRF). The pH of the drinks and that of the simulated saliva solution were determined by the titrimetric method, a sodium hydroxide solution 0.1 mol/dm3 was prepared and used for the titration. An amount of 5 mL of each analyzed solution was added to 15 mL of distilled water to obtain a dilution, to which 3 drops of phenolphthalein (as a color indicator-Phenolphthalein, 3,3-Bis(4-hydroxyphenyl)-1(3H)-isobenzofuranone, C20H14O4 Mw: 318.32, purchased from Merck) were added for each analysis. For each solution, the experiment was repeated three times in order to obtain accurate results. The results of our study materialized into a real plea for modifying the patients' behavior in terms of diet and preferences for acidic drinks, so that their quality-of-life valence can be improved by keeping the composite materials in a long-term unalterable state on the one hand; on the other hand, systemic damage can be prevented as well.

7.
Gels ; 8(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35735721

RESUMO

In spite of its versatility, the emulsion templating method is rather uncommon for the preparation of porous silicones. In this contribution, two siloxane-containing stabilizers, designed to be soluble in polar (water) and non-polar (toluene) solvents, respectively, were used in low concentrations to produce stable emulsions, wherein polysiloxane gels were obtained by UV-photoinitiated thiol-ene click cross-linking. The stabilizers exhibited negative interfacial tension, as measured by Wilhelmy plate tensiometry. The emulsion gels evolved into porous silicones (xerogels), with tunable morphology and properties. According to TEM and SEM investigations, the emulsion template was preserved in the final materials. Several parameters (e.g., the structure of the polysiloxane precursors, composition of the emulsion gels, nature of the continuous phase, cross-linking conditions, or additives) can be varied in order to obtain porous elastic materials with desired properties, such as Janus membranes, absorbent monoliths, all-polymer porous composites, or silicone-swollen gels. The feasibility of these types of materials was tested, and exemplary porous silicones were briefly characterized by contact angle measurements, mechanical testing, and absorption tests. The proposed method is simple, fast, and economic, uses very little amounts of stabilizers, and can be adjusted as a green technique. In this contribution, all the silicon-based materials with a convenient design were prepared in house.

8.
Chemosphere ; 304: 135383, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35718040

RESUMO

The application of several ion-exchange resins (IExR) with amino and amphoteric functionalities in batch retention of heavy metal ions (HMIs) (Cu(II), Fe(II), Mn(II), Zn(II)) from mono- and multicomponent simulated waters and from real polluted water collected from tailings pond of Tarnita (Suceava, Romania) sterile dump is deeply herein explored. The tested resins exhibited high sorption capacities, as evaluated by atomic absorption spectrometry, results supported by infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The effect of pH on the IExR sorption capacity in competitive condition evidenced the optimum pH where IExR sorption efficiency is maximum. Reutilization of IExR in six consecutive sorption/desorption/regeneration cycles showed their renewable sorption properties. Wheat germination tests demonstrated that the Tarnita collected water had a high toxic effect whereas the resulted supernatant after batch sorption was nontoxic. The study shows that HMIs content after IExR sorption is under the admitted maximum level for surface water, and represents an important step on the efforts to solve the environmental problem in Tarnita area, by removing the main contaminants found in the local river water.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Íons/análise , Metais Pesados/análise , Água/análise , Poluentes Químicos da Água/análise , Poluição da Água/análise
9.
Polymers (Basel) ; 14(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36145929

RESUMO

Due to their highly reactive character and multiple crosslinking capacity, epoxy resins are one of the worldwide market-dominating classes of thermosetting polymers and are present in a wide range of technical applications, including structural adhesives, coatings and polymer matrices for composite materials. Despite their excellent features, epoxy resins are known to be highly flammable and possess low thermal stability and a brittle character and crack easily under impact forces. An efficient approach towards eliminating such drawbacks resides in obtaining epoxy-based semi-interpenetrating polymer networks, which possess excellent control over the morphology. The article describes the comparative effect of three hardeners (aromatic, cycloaliphatic and aliphatic) in the presence of an oligophosphonate (-R-O-PO(C6H5)-O-) (2 wt.% phosphorus) on the photochemical, fire and antifungal performance of bisphenol A diglycidyl ether semi-interpenetrating polymer networks. The networks are designed as future potential outdoor protective coatings for different substrates. The fire resistance capacity of the networks was undertaken with microscale combustion calorimetry before and after photochemical aging. Structural changes during photoirradiation were monitored via color modification studies, Fourier-transform infrared spectroscopy, differential scanning calorimetry, morphological assessment through scanning electron microscopy and mass loss measurements in order to propose the action mode of the hardeners and the oligophosphonate on the material properties. Microbiological testing was also undertaken with the aid of three specific wood decaying fungi as a first substrate.

10.
Polymers (Basel) ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35012235

RESUMO

Interpenetrating polymer networks (IPNs) represent an interesting approach for tuning the properties of silicone elastomers due to the possible synergism that may occur between the networks. A new approach is presented, which consists of mixing two silicone-based networks with different crosslinking pathways; the first network being cured by condensation route and the second network by UV curing. The networks were mixed in different ratios and the resulted samples yield good mechanical properties (improved elongations, up to 720%, and Young's modulus, 1 MPa), thermal properties (one glass transition temperature, ~-123 °C), good dielectric strength (~50 V/µm), and toughness (63 kJ/m3).

11.
Gels ; 8(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36005120

RESUMO

Recently, the development of new materials with the desired characteristics for functional tissue engineering, ensuring tissue architecture and supporting cellular growth, has gained significant attention. Hydrogels, which possess similar properties to natural cellular matrixes, being able to repair or replace biological tissues and support the healing process through cellular proliferation and viability, are a challenge when designing tissue scaffolds. This paper provides new insights into hydrogel-based polymeric blends (hydroxypropyl cellulose/Pluronic F68), aiming to evaluate the contributions of both components in the development of new tissue scaffolds. In order to study the interactions within the hydrogel blends, FTIR and 1HNMR spectroscopies were used. The porosity and the behavior in moisture medium were highlighted by SEM and DVS analyses. The biodegradability of the hydrogel blends was studied in a simulated biological medium. The hydrogel composition was determinant for the scaffold behavior: the HPC component was found to have a great influence on the BET and GAB areas, on the monolayer values estimated from sorption-desorption isotherms and on mucoadhesivity on small intestine mucosa, while the Pluronic F68 component improved the thermal stability. All blends were also found to have good mechanical strength and increased biocompatibility on the NHDF cell line. Based on their particular compositions and increased mucoadhesivity on small intestine mucosa, these polymeric blends could be effective in the repair or recovery of damaged cell membranes (due to the contribution of Pluronic F68) or in control drug-delivery intestinal formulations.

12.
RSC Adv ; 8(41): 23274-23283, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35540166

RESUMO

Composite microparticles of CaCO3 and two pectin samples (which differ by the functional group ratio) or corresponding nonstoichiometric polyelectrolyte complexes with different molar ratios (0.5, 0.9 and 1.2) are obtained, characterized and tested for loading and release of streptomycin and kanamycin sulphate. The synthesized carriers were characterized before and after drug loading in terms of morphology (by SEM using secondary electron and energy selective backscattered electron detectors), porosity (by water sorption isotherms) and elemental composition (by elemental mapping using energy dispersive X-ray and FTIR spectroscopy). The kinetics of the release mechanism from the microparticles was investigated using Higuchi and Korsmeyer-Peppas mathematical models.

13.
Materials (Basel) ; 11(10)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322165

RESUMO

Polylactic acid (PLA) films were coated by coaxial electrospinning with essential and vegetable oils (clove and argan oils) and encapsulated into chitosan, in order to combine the biodegradability and mechanical properties of PLA substrates with the antimicrobial and antioxidant properties of the chitosan⁻oil nanocoatings. It has been established that the morphology of the electrospun nanocoatings mainly depend on the average molecular weight (MW) of chitosan. Oil beads, encapsulated into the main chitosan nanofibers, were obtained using high-MW chitosan (Chit-H). Oil encapsulated in chitosan naoparticles resulted when low-MW chitosan (Chit-L) was used. The coating layer, with a thickness of 100 ± 20 nm, had greater roughness for the samples containing Chit-H compared with the samples containing Chit-L. The coated PLA films had higher antibacterial activity when the nanocoating contained clove oil rather than when argan oil was used, for both types of chitosan. Nanocoatings containing Chit-H had higher antibacterial activity compared with those containing Chit-L, for both types of oil tested, due to the larger surface area of the rougher nanoscaled morphology of the coating layer that contained Chit-L. The chitosan⁻clove oil combination had higher antioxidant activity compared to the simple chitosan nanocoating, which confirmed their synergistic activities. The low activity of systems containing argan oil was explained by big differences between their chemical composition and viscosity.

14.
ACS Appl Mater Interfaces ; 9(42): 37264-37278, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28972729

RESUMO

New types of composites were obtained by an autotemplate method for assembling hollow CaCO3 capsules by using pH-sensitive polymers. Five pectin samples, which differ in the methylation degree and/or amide content, and some nonstoichiometric polyelectrolyte complex dispersions, prepared with the pectin samples and poly(allylamine hydrochloride), were used to control the crystal growth. The morphology of the composites was investigated by scanning electron microscopy, and the polymorphs characteristics were investigated by FTIR spectroscopy. The presence of the polymer in the composite particles was evidenced by X-ray photoelectron spectroscopy, particle charge density, and zeta-potential. The new CaCO3/pectin hollow capsules were tested as a possible matrix for a tetracycline hydrochloride carrier. The kinetics of the drug release mechanism was followed using Higuchi and Korsmeyer-Peppas mathematical models.


Assuntos
Cápsulas/química , Carbonato de Cálcio , Portadores de Fármacos , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Pectinas , Tetraciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA