Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunology ; 171(2): 235-249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947218

RESUMO

The incidence of systemic lupus erythematosus (SLE) is about nine times higher in women than in men, and the underlying mechanisms that contribute to this gender bias are not fully understood. Previously, using lupus-prone (SWR × NZB)F1 (SNF1) mice, we have shown that the intestinal immune system could play a role in the initiation and progression of disease in SLE, and depletion of gut microbiota produces more pronounced disease protection in females than in males. Here, we show that the gut permeability features of lupus-prone female SNF1 mice at juvenile ages directly correlate with the expression levels of pro-inflammatory factors, faecal IgA abundance and nAg reactivity and the eventual systemic autoantibody levels and proteinuria onset. Furthermore, we observed that the disease protection achieved in female SNF1 mice upon depletion of gut microbiota correlates with the diminished gut inflammatory protein levels, intestinal permeability and circulating microbial DNA levels. However, faecal microbiota transplant from juvenile male and females did not result in modulation of gut inflammatory features or permeability. Overall, these observations suggest that the early onset of intestinal inflammation, systemic autoantibody production and clinical stage disease in lupus-prone females is linked to higher gut permeability in them starting at as early as juvenile age. While the higher gut permeability in juvenile lupus-prone females is dependent on the presence of gut microbes, it appears to be independent of the composition of gut microbiota.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Feminino , Humanos , Masculino , Camundongos , Animais , Função da Barreira Intestinal , Sexismo , Camundongos Endogâmicos NZB , Autoanticorpos , Modelos Animais de Doenças
2.
Immunology ; 165(4): 497-507, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35138645

RESUMO

Systemic lupus erythematosus (SLE) is characterized by the production of pathogenic autoantibodies with nuclear antigen (nAg) specificity. Using (SWRxNZB)F1 (SNF1) mice, we showed higher levels of Immunoglobulin A (IgA) production in the intestine and the nAg reactivity of faecal IgA under lupus susceptibility. Here, we determined whether the faecal IgA abundance and nAg reactivity are higher in, different among, various lupus-prone preclinical models (MRL/lpr, NZBxNZW-F1, SNF1, NZM2410 and NZM2328). We also determined whether the faecal IgA nAg reactivity at preseropositive ages correlates with the eventual serum autoantibody levels in males and females of these mouse models. We show that age-dependent increase in the abundance and nAg reactivity of faecal IgA can vary among different lupus-prone mouse models. Importantly, faecal IgA in these mice show significant levels of nAg reactivity, starting as early as at juvenile age. Furthermore, the pre-seropositive stage nAg reactivity of faecal IgA in most lupus-prone strains correlates well with that of eventual, seropositive stage systemic autoantibody levels. Gender differences in serum autoantibody levels were preceded by similar differences in the faecal IgA abundance and nAg reactivity. These observations suggest that faecal IgA features, nAg reactivity particularly, could serve as a biomarker for early prediction of the eventual systemic autoimmunity in lupus-prone subjects.


Assuntos
Imunoglobulina A , Lúpus Eritematoso Sistêmico , Animais , Antígenos Nucleares , Autoanticorpos , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr
3.
Immunology ; 166(3): 341-356, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35404483

RESUMO

Defective immune regulation has been recognized in type 1 diabetes (T1D). Immune regulatory T cell check-point receptors, which are generally upregulated on activated T cells, have been the molecules of attention as therapeutic targets for enhancing immune response in tumour therapy. Here, we show that pancreatic ß-cell antigen (BcAg) presentation by engineered tolerogenic dendritic cells (tDCs) that express CTLA4 selective ligand (B7.1wa) or a combination of CTLA4, PD1 and BTLA selective ligands (B7.1wa, PD-L1 and HVEM-CRD1 respectively; multiligand-DCs) causes an increase in regulatory cytokine and T cell (Treg) responses and suppression of the effector T cell function as compared with engineered control-DCs. Non-obese diabetic mice treated with BcAg-pulsed CTLA4-ligand-DCs and multiligand-DCs at pre-diabetic and early-hyperglycaemic stages showed significantly lower degree of insulitis, higher frequencies of insulin-positive islets, profound delay in and reversal of hyperglycaemia for a significant duration. Immune cells from the tDC-treated mice not only produced lower amounts of IFNγ and higher amounts of IL10 and TGFß1 upon BcAg challenge, but also failed to induce hyperglycaemia upon adoptive transfer. While both CTLA4-ligand-DCs and multiligand-DCs were effective in inducing tolerance, multiligand-DC treatment produced an overall higher suppressive effect on effector T cell function and disease outcome. These studies show that enhanced engagement of T cell checkpoint receptors during BcAg presentation can modulate T cell function and suppress autoimmunity and progression of the disease in T1D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglicemia , Animais , Apresentação de Antígeno , Antígeno CTLA-4/metabolismo , Células Dendríticas , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Tolerância Imunológica , Ligantes , Camundongos , Receptores Imunológicos , Linfócitos T Reguladores
4.
Clin Immunol ; 242: 109107, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36049603

RESUMO

Systemic lupus erythematosus (SLE) is characterized by the production of anti-nuclear autoantibodies. Here, for the first time, we show that the abundances of gut permeability marker Zonulin and IgA1- and IgA2- subclasses are significantly higher in the fecal samples of SLE patients compared to HCs. Importantly, IgA-total, and IgA1- and IgA2-subclasses from SLE patients showed higher nAg reactivity titers. Notably, we found that not only the nuclear antigen (nAg) reactive fecal IgA1:IgA2 ratio is higher in SLE patients, but also the abundance and nAg reactivity of fecal IgA and subclasses, IgA1 particularly, correlate with the fecal levels of Zonulin, which is produced primarily in the small intestine. These observations that higher amounts of nAg-reactive IgA and gut permeability marker are produced, particularly, in the proximal gut suggest a compromised epithelial barrier function and pro-inflammatory characteristics of small intestine in SLE patients.


Assuntos
Imunoglobulina A , Lúpus Eritematoso Sistêmico , Antígenos Nucleares , Biomarcadores , Fezes , Humanos , Permeabilidade
5.
J Autoimmun ; 108: 102420, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32019684

RESUMO

The risk of developing systemic lupus erythematosus (SLE) is about 9 times higher in women as compared to men. Our recent report, which used (SWRxNZB) F1 (SNF1) mouse model of spontaneous lupus, showed a potential link between immune response initiated in the gut mucosa at juvenile age (sex hormone independent) and SLE susceptibility. Here, using this mouse model, we show that gut microbiota contributes differently to pro-inflammatory immune response in the intestine and autoimmune progression in lupus-prone males and females. We found that gut microbiota composition in male and female littermates are significantly different only at adult ages. However, depletion of gut microbes causes suppression of autoimmune progression only in females. In agreement, microbiota depletion suppressed the pro-inflammatory cytokine response of gut mucosa in juvenile and adult females. Nevertheless, microbiota from females and males showed, upon cross-transfer, contrasting abilities to modulate disease progression. Furthermore, orchidectomy (castration) not only caused changes in the composition of gut microbiota, but also a modest acceleration of autoimmune progression. Overall, our work shows that microbiota-dependent pro-inflammatory immune response in the gut mucosa of females initiated at juvenile ages and androgen-dependent protection of males contribute to gender differences in the intestinal immune phenotype and systemic autoimmune progression.


Assuntos
Autoimunidade , Microbioma Gastrointestinal/imunologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/patologia , Fenótipo , Fatores Etários , Animais , Biomarcadores , Modelos Animais de Doenças , Progressão da Doença , Feminino , Mediadores da Inflamação/metabolismo , Masculino , Metagenoma , Metagenômica/métodos , Camundongos , Fatores Sexuais , Transcriptoma
6.
J Nutr ; 150(5): 1291-1302, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879786

RESUMO

BACKGROUND: ß-Glucans (BGs), a group of complex dietary polysaccharides (CDPs), are available as dietary supplements. However, the effects of orally administered highly purified BGs on gut inflammation are largely unknown. OBJECTIVES: The aim of this study was to investigate the impact of orally administering highly purified, yeast-derived BG (YBG; ß-1,3/1,6-d-glucan) on susceptibility to colitis. METHODS: Eight-week-old C57BL/6 (B6) mice were used in a series of experiments. Experiment (Expt) 1: male and female mice were treated every day, for 40 d, with saline (control) or 250 µg YBG, followed by 2.5% (wt:vol) dextran sulfate sodium (DSS) in drinking water during days 30-35; and colitis severity and intestinal immune phenotype were determined. Expt 2: female B6 mice were treated with saline or YBG for 30 d and intestinal immune phenotype, gut microbiota composition, and fecal SCFA concentrations were determined. Expt 3: female B6 mice were treated as in Expt 2, given drinking water with or without antibiotics [Abx; ampicillin (1 g/L), vancomycin (0.5 g/L), neomycin (1 g/L), and metronidazole (1 g/L)] during days 16-30, and gut immune phenotype and fecal SCFA concentrations were determined. Expt 4: female B6 Foxp3-green fluorescent protein (-GFP) reporter mice were treated as in Expt 3, and intestinal T-regulatory cell (Treg) frequencies and immune phenotypes were determined. Expt 5: female mice were treated as in Expt 1, given drinking water with or without antibiotics during days 16-40, and colitis severity and intestinal cytokine production were determined. RESULTS: Compared with controls, the YBG group in Expt 1 exhibited suppressive effects on features of colitis, such as loss of body weight (by 47%; P < 0.001), shortening of colon (by 24%; P = 0.016), and histopathology severity score (by 45%; P = 0.01). The YBG group of Expt 2 showed a shift in the abundance of gut microbiota towards Bacteroides (by 16%; P = 0.049) and Verrucomicrobia (mean ± SD: control = 7.8 ± 0.44 vs. YBG = 21.0 ± 9.6%) and a reduction in Firmicutes (by 66%; P < 0.001). The YBG group also showed significantly higher concentrations of fecal SCFAs such as acetic (by 37%; P = 0.016), propionic (by 47%; P = 0.026), and butyric (by 57%; P = 0.013) acids. Compared with controls, the YBG group of Expt 2 showed higher frequencies of Tregs (by 32%; P = 0.043) in the gut mucosa. Depletion of gut microbiota in the YBG group of mice caused diminished fecal SCFA concentrations (Expt 3) and intestinal Treg frequencies (Expt 4). Compared with the YBG group, the YBG-(Abx) group of Expt 5 showed aggravated colitis features including loss of body weight (by >100%; P < 0.01) and colonic inflammation score (by 42%; P = 0.04). CONCLUSIONS: Studies using B6 mice show that dietary BGs are beneficial for promoting intestinal health when the gut microbiota is intact. However, these CDPs may produce adverse effects if gut microbiota is compromised.


Assuntos
Colite/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos/administração & dosagem , Saccharomyces cerevisiae/química , beta-Glucanas/administração & dosagem , Animais , Colite/induzido quimicamente , Colite/imunologia , Sulfato de Dextrana/farmacologia , Ácidos Graxos Voláteis/análise , Fezes/química , Fezes/microbiologia , Feminino , Fatores de Transcrição Forkhead/genética , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Imunidade/efeitos dos fármacos , Intestinos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Immunology ; 157(1): 70-85, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30712258

RESUMO

The dietary supplement and prebiotic values of ß-glucan-rich products have been widely recognized and dietary approaches for modulating autoimmunity have been increasingly explored, we assess the impact of oral administration of high-purity yeast ß-glucan (YBG) on gut immune function, microbiota and type 1 diabetes (T1D) using mouse models. Oral administration of this non-digestible complex polysaccharide caused a dectin-1-dependent immune response involving increased expression of interleukin-10 (IL-10), retinaldehyde dehydrogenase (Raldh) and pro-inflammatory cytokines in the gut mucosa. YBG-exposed intestinal dendritic cells induced/expanded primarily Foxp3+ , IL-10+ and IL-17+ T cells, ex vivo. Importantly, prolonged oral administration of low-dose YBG at pre-diabetic stage suppressed insulitis and significantly delayed the appearance of T1D in non-obese diabetic (NOD) mice. Further, prolonged treatment with YBG showed increased Foxp3+ T-cell frequencies, and a significant change in the gut microbiota, particularly an increase in the abundance of Bacteroidetes and a decrease in the Firmicute members. Oral administration of YBG, together with Raldh-substrate and ß-cell antigen, resulted in better protection of NOD mice from T1D. These observations suggest that YBG not only has a prebiotic property, but also an oral tolerogenic-adjuvant-like effect, and these features could be exploited for modulating autoimmunity in T1D.


Assuntos
Bacteroidetes/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Carboidratos da Dieta/uso terapêutico , Microbioma Gastrointestinal/imunologia , Linfócitos T Reguladores/imunologia , Família Aldeído Desidrogenase 1 , Animais , Diabetes Mellitus Tipo 1/dietoterapia , Diabetes Mellitus Tipo 1/microbiologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica , Imunidade , Imunomodulação , Interleucina-10/metabolismo , Isoenzimas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Prebióticos , Retinal Desidrogenase/metabolismo
8.
J Biol Chem ; 290(11): 6890-902, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25616662

RESUMO

Microtubule-based centrioles in the centrosome mediate accurate bipolar cell division, spindle orientation, and primary cilia formation. Cellular checkpoints ensure that the centrioles duplicate only once in every cell cycle and achieve precise dimensions, dysregulation of which results in genetic instability and neuro- and ciliopathies. The normal cellular level of centrosomal protein 4.1-associated protein (CPAP), achieved by its degradation at mitosis, is considered as one of the major mechanisms that limits centriole growth at a predetermined length. Here we show that CPAP levels and centriole elongation are regulated by centrobin. Exogenous expression of centrobin causes abnormal elongation of centrioles due to massive accumulation of CPAP in the cell. Conversely, CPAP was undetectable in centrobin-depleted cells, suggesting that it undergoes degradation in the absence of centrobin. Only the reintroduction of full-length centrobin, but not its mutant form that lacks the CPAP binding site, could restore cellular CPAP levels in centrobin-depleted cells, indicating that persistence of CPAP requires its interaction with centrobin. Interestingly, inhibition of the proteasome in centrobin-depleted cells restored the cellular and centriolar CPAP expression, suggesting its ubiquitination and proteasome-mediated degradation when centrobin is absent. Intriguingly, however, centrobin-overexpressing cells also showed proteasome-independent accumulation of ubiquitinated CPAP and abnormal, ubiquitin-positive, elongated centrioles. Overall, our results show that centrobin interacts with ubiquitinated CPAP and prevents its degradation for normal centriole elongation function. Therefore, it appears that loss of centrobin expression destabilizes CPAP and triggers its degradation to restrict the centriole length during biogenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Linhagem Celular , Centríolos/ultraestrutura , Deleção de Genes , Humanos , Proteínas Associadas aos Microtúbulos/análise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinação , Regulação para Cima
9.
J Immunol ; 193(7): 3308-21, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25143443

RESUMO

ß-Glucans are naturally occurring polysaccharides in cereal grains, mushrooms, algae, or microbes, including bacteria, fungi, and yeast. Immune cells recognize these ß-glucans through a cell surface pathogen recognition receptor called Dectin-1. Studies using ß-glucans and other Dectin-1 binding components have demonstrated the potential of these agents in activating the immune cells for cancer treatment and controlling infections. In this study, we show that the ß-glucan from Saccharomyces cerevisiae induces the expression of immune regulatory cytokines (IL-10, TGF-ß1, and IL-2) and a tolerogenic enzyme (IDO) in bone marrow-derived dendritic cells as well as spleen cells. These properties can be exploited to modulate autoimmunity in the NOD mouse model of type 1 diabetes (T1D). Treatment of prediabetic NOD mice with low-dose ß-glucan resulted in a profound delay in hyperglycemia, and this protection was associated with increase in the frequencies of Foxp3(+), LAP(+), and GARP(+) T cells. Upon Ag presentation, ß-glucan-exposed dendritic cells induced a significant increase in Foxp3(+) and LAP(+) T cells in in vitro cultures. Furthermore, systemic coadministration of ß-glucan plus pancreatic ß cell Ag resulted in an enhanced protection of NOD mice from T1D as compared with treatment with ß-glucan alone. These observations demonstrate that the innate immune response induced by low-dose ß-glucan is regulatory in nature and can be exploited to modulate T cell response to ß cell Ag for inducing an effective protection from T1D.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Polissacarídeos Fúngicos/farmacologia , Imunidade Inata/efeitos dos fármacos , Lectinas Tipo C/imunologia , Saccharomyces cerevisiae/química , beta-Glucanas/farmacologia , Animais , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Relação Dose-Resposta Imunológica , Polissacarídeos Fúngicos/química , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Linfócitos T/imunologia , Linfócitos T/patologia , beta-Glucanas/química
10.
J Biol Chem ; 289(22): 15166-78, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24700465

RESUMO

Centriole duplication is the process by which two new daughter centrioles are generated from the proximal end of preexisting mother centrioles. Accurate centriole duplication is important for many cellular and physiological events, including cell division and ciliogenesis. Centrosomal protein 4.1-associated protein (CPAP), centrosomal protein of 152 kDa (CEP152), and centrobin are known to be essential for centriole duplication. However, the precise mechanism by which they contribute to centriole duplication is not known. In this study, we show that centrobin interacts with CEP152 and CPAP, and the centrobin-CPAP interaction is critical for centriole duplication. Although depletion of centrobin from cells did not have an effect on the centriolar levels of CEP152, it caused the disappearance of CPAP from both the preexisting and newly formed centrioles. Moreover, exogenous expression of the CPAP-binding fragment of centrobin also caused the disappearance of CPAP from both the preexisting and newly synthesized centrioles, possibly in a dominant negative manner, thereby inhibiting centriole duplication and the PLK4 overexpression-mediated centrosome amplification. Interestingly, exogenous overexpression of CPAP in the centrobin-depleted cells did not restore CPAP localization to the centrioles. However, restoration of centrobin expression in the centrobin-depleted cells led to the reappearance of centriolar CPAP. Hence, we conclude that centrobin-CPAP interaction is critical for the recruitment of CPAP to procentrioles to promote the elongation of daughter centrioles and for the persistence of CPAP on preexisting mother centrioles. Our study indicates that regulation of CPAP levels on the centrioles by centrobin is critical for preserving the normal size, shape, and number of centrioles in the cell.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/genética , Divisão Celular/fisiologia , Centríolos/genética , Clonagem Molecular , Proteínas de Fluorescência Verde/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Osteossarcoma , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética
11.
J Immunol ; 190(11): 5516-25, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23630352

RESUMO

Earlier, we had demonstrated that treatment with low dose of GM-CSF can prevent the development of experimental autoimmune thyroiditis (EAT), experimental autoimmune myasthenia gravis, and type 1 diabetes, and could also reverse ongoing EAT and experimental autoimmune myasthenia gravis. The protective effect was mediated through the induction of tolerogenic CD11C(+)CD8α(-) dendritic cells (DCs) and consequent expansion of Foxp3(+) regulatory T cells (Tregs). Subsequently, we showed that GM-CSF acted specifically on bone marrow precursors and facilitated their differentiation into tolerogenic dendritic cells (DCs; GM-CSF-induced bone marrow-derived DCs [GM-BMDCs]), which directed Treg expansion in a contact-dependent manner. This novel mechanism of Treg expansion was independent of TCR-mediated signaling but required exogenous IL-2 and cosignaling from DC-bound OX40L. In this study, we observed that OX40L-mediated signaling by GM-BMDCs, although necessary, was not sufficient for Treg expansion and required signaling by Jagged1. Concurrent signaling induced by OX40L and Jagged1 via OX40 and Notch3 receptors expressed on Tregs was essential for the Treg expansion with sustained FoxP3 expression. Adoptive transfer of only OX40L(+)Jagged1(+) BMDCs led to Treg expansion, increased production of IL-4 and IL-10, and suppression of EAT in the recipient mice. These results showed a critical role for OX40L- and Jagged1-induced cosignaling in GM-BMDC-induced Treg expansion.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Células Dendríticas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Ligante OX40/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos B7/imunologia , Antígenos B7/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Células Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Proteína Jagged-1 , Ligantes , Ativação Linfocitária , Camundongos , Receptores Notch/metabolismo , Proteínas Serrate-Jagged , Tireoidite Autoimune/imunologia , Tireoidite Autoimune/metabolismo
12.
Clin Immunol ; 153(1): 187-98, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24792135

RESUMO

To prepare a novel Bispecific Antibody (BsAb) as a potential targeted therapy for T1D, we produced a "functionally inert" monoclonal antibody (mAb) against Glucose transporter-2 (GLUT-2) expressed on ß-cells to serve as an anchoring antibody. The therapeutic arm is an agonistic mAb against Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), a negative regulator of T-cell activation expressed on activated CD4+ T-cells. A BsAb was prepared by chemically coupling an anti-GLUT2 mAb to an agonistic anti-CTLA-4 mAb. This BsAb was able to bind to GLUT2 and CTLA-4 in vitro, and to pancreatic islets, both in vitro and in vivo. We tested the safety and efficacy of this BsAb by treating Non-Obese Diabetes (NOD) mice and found that it could delay the onset of diabetes with no apparent undesirable side effects. Thus, engagement of CTLA-4 on activated T cells from target tissue can be an effective way to treat type-1 diabetes.


Assuntos
Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Células Secretoras de Insulina/imunologia , Animais , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Antígeno CTLA-4/imunologia , Linhagem Celular , Cricetinae , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Transportador de Glucose Tipo 2/biossíntese , Transportador de Glucose Tipo 2/imunologia , Camundongos , Camundongos Endogâmicos NOD , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Resultado do Tratamento
13.
J Immunol ; 184(12): 6695-708, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20483724

RESUMO

The levels of expression of alternatively spliced variants of CTLA-4 and insufficient CTLA-4 signaling have been implicated in type 1 diabetes. Hence, we hypothesized that increasing CTLA-4-specific ligand strength on autoantigen-presenting dendritic cells (DCs) can enhance ligation of CTLA-4 on T cells and lead to modulation of autoreactive T cell response. In this study, we show that DC-directed enhanced CTLA-4 engagement upon pancreatic beta cell Ag presentation results in the suppression of autoreactive T cell response in NOD mice. The T cells from prediabetic NOD mice treated with an agonistic anti-CTLA-4 Ab-coated DC (anti-CTLA-4-Ab DC) showed significantly less proliferative response and enhanced IL-10 and TGF-beta1 production upon exposure to beta cell Ags. Furthermore, these mice showed increased frequency of Foxp3+ and IL-10+ T cells, less severe insulitis, and a significant delay in the onset of hyperglycemia compared with mice treated with control Ab-coated DCs. Further analyses showed that diabetogenic T cell function was modulated primarily through the induction of Foxp3 and IL-10 expression upon Ag presentation by anti-CTLA-4-Ab DCs. The induction of Foxp3 and IL-10 expression appeared to be a consequence of increased TGF-beta1 production by T cells activated using anti-CTLA-4-Ab DCs, and this effect could be enhanced by the addition of exogenous IL-2 or TGF-beta1. Collectively, this study demonstrates the potential of a DC-directed CTLA-4 engagement approach not only in treating autoimmunity in type 1 diabetes, but also in altering diabetogenic T cell function ex vivo for therapy.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD/metabolismo , Células Dendríticas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígeno CTLA-4 , Separação Celular , Citocinas/biossíntese , Citocinas/imunologia , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Citometria de Fluxo , Células Secretoras de Insulina/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD
14.
Front Toxicol ; 4: 937150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846434

RESUMO

Background: Combination therapy of targeted drugs in cancer treatment is a field in constant flux, with research balancing side effects with efficacy. Efficacy from combination therapy is improved either through synthetic lethality or through prevention of recurrent clones. Previous research has shown (hydroxy-)chloroquine is insufficient to disrupt autophagy in tumors. Hence, either combinations or novel autophagy agents are desired. In vivo studies of ovarian cancer have revealed that chloroquine can be combined with up to four other autophagy drugs to suppress ovarian cancer growth. While cancer efficacy is now established for the autophagy drug combination, it is unclear what toxicities may require monitoring in human trials. Additive toxicity with chemotherapy is also unknown. Methods: To address toxicity in more depth than previous weight-monitoring studies, biochemical and histopathology studies were performed. Mouse groups were treated with autophagy drugs for 2 weeks, with or without the chemotherapy Doxil. After the last dose, mice were processed for blood biochemistry, white blood cell markers, and histopathology. Results: Data from a comprehensive blood biochemistry panel, flow cytometric measurements of blood cell markers, and histopathology are herein reported. While Doxil presented clear bone marrow and immunologic toxicity, autophagy drugs were overall less toxic and more variable in their presentation of potential toxicities. Only minor additive effects of autophagy drugs with Doxil were observed. Conclusion: Combinations of autophagy drugs may be considered for therapy in human oncology trials, with possible side effects to monitor informed by these murine pre-clinical data.

15.
Autoimmunity ; 55(2): 95-108, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34882054

RESUMO

Progressive destruction of pancreatic islet ß-cells by immune cells is a primary feature of type 1 diabetes (T1D) and therapies that can restore the functional ß-cell mass are needed to alleviate disease progression. Here, we report the use of mesenchymal stromal/stem cells (MSCs) for the production and delivery of Gastrin, a peptide hormone that is produced by intestinal cells and foetal islets and can increase ß-Cell mass, to promote protection from T1D. A single injection of syngeneic MSCs that were engineered to express Gastrin (Gastrin-MSCs) caused a significant delay in hyperglycaemia in non-obese diabetic (NOD) mice compared to engineered control-MSCs. Similar treatment of early-hyperglycaemic mice caused the restoration of euglycemia for a considerable duration, and these therapeutic effects were associated with the protection of, and/or higher frequencies of, insulin-producing islets and less severe insulitis. While the overall immune cell phenotype was not affected profoundly upon treatment using Gastrin-MSCs or upon in vitro culture, pancreatic lymph node cells from Gastrin-MSC treated mice, upon ex vivo challenge with self-antigen, showed a Th2 and Th17 bias, and diminished the diabetogenic property in NOD-Rag1 deficient mice suggesting a disease protective immune modulation under Gastrin-MSC treatment associated protection from hyperglycaemia. Overall, this study shows the potential of production and delivery of Gastrin in vivo, by MSCs, in protecting insulin-producing ß-cells and ameliorating the disease progression in T1D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Gastrinas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Animais , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Gastrinas/genética , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos NOD
16.
Front Nutr ; 8: 769341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805251

RESUMO

Complex dietary polysaccharides such as ß-glucans are widely used for their anti-inflammatory properties. We reported before that oral administration of Yeast ß-glucan (YBG) in adult mice can help delay type 1 diabetes (T1D) onset and suppress gut inflammation through modulation of the structure and function of gut microbiota. Since juvenile age is characterized by profoundly changing immature gut microbiota, we examined the impact of oral treatment with YBG in non-obese diabetic (NOD) mice at this age. Juvenile mice that received daily oral administration of YBG starting at 15 days of age for 7 or 30 days were examined for changes in gut microbiota, immune characteristics, and T1D incidence. Mice that received YBG for 30 days but not 7 days, showed considerable changes in the composition and diversity of fecal microbiota as compared to controls. Predictive functional analysis, based on 16S rDNA sequences, revealed overrepresentation of glycan biosynthesis and metabolism, energy metabolism, and fatty acid biosynthesis pathways in mice that received YBG for 30 days. Immune phenotype of the colon showed skewing toward immune regulatory and Th17 cytokines with increases in IL-10, IL-17, and IL-21 and a decrease in TNF-α, although increases in some pro-inflammatory cytokines (IL-1b, IFN-γ) were observed. Most importantly, mice that received YBG treatment for 30 days showed significantly suppressed insulitis and delayed onset of hyperglycemia compared to controls. Overall, this study suggests that oral consumption of YBG beginning at pre-diabetic juvenile ages could have positive maturational changes to gut microbiota and immune functions and could result in a delay in the disease onset in those who are pre-disposed to T1D.

17.
Sci Rep ; 11(1): 12689, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135376

RESUMO

Centrosomal P4.1-associated protein (CPAP) plays a critical role in restricting the centriole length in human cells. Here, we report a novel, positive regulatory influence for CPAP on endocytic vesicular transport (EVT) and lysosome targeting of internalized-cell surface receptor EGFR. We observed that higher CPAP levels cause an increase in the abundance of multi-vesicular body (MVB) and EGFR is detectable in CPAP-overexpression induced puncta. The surface and cellular levels of EGFR are higher under CPAP deficiency and lower under CPAP overexpression. While ligand-engagement induced internalization or routing of EGFR into early endosomes is not influenced by cellular levels of CPAP, we found that targeting of ligand-activated, internalized EGFR to lysosome is impacted by CPAP levels. Transport of ligand-bound EGFR from early endosome to late endosome/MVB and lysosome is diminished in CPAP-depleted cells. Moreover, CPAP depleted cells appear to show a diminished ability to form MVB structures upon EGFR activation. These observations suggest a positive regulatory effect of CPAP on EVT of ligand-bound EGFR-like cell surface receptors to MVB and lysosome. Overall, identification of a non-centriolar function of CPAP in endocytic trafficking provides new insights in understanding the non-canonical cellular functions of CPAP.


Assuntos
Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Vesículas Transportadoras/metabolismo , Linhagem Celular Tumoral , Endocitose , Endossomos/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligantes , Proteínas Associadas aos Microtúbulos/genética , Corpos Multivesiculares/metabolismo , Transporte Proteico
18.
Oncotarget ; 12(8): 807-822, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33889303

RESUMO

Higher epidermal growth factor receptor (EGFR) signaling can contribute to tumor metastasis and resistance to therapies in oral squamous cell carcinoma (OSCC). EGFR signaling can promote epithelial-mesenchymal transition (EMT) in OSCC. EMT is a process by which epithelial cells acquire invasive properties and it can contribute to tumor metastasis. Not only do the abnormal functions of microtubule and microtubule-organizing centers (MTOC) such as centrosomes lead to cancers, but also the malignant tissues are characterized by aberrant centriolar features and amplified centrosomes. Microtubule inhibition therapies increase the sensitivity to EGFR targeting drugs in various cancers. In this study, we show that the loss of expression of a microtubule/tubulin binding protein, centrosomal protein 4.1-associated protein (CPAP), which is critical for centriole biogenesis and normal functioning of the centrosome, caused an increase in the EGFR levels and its signaling and, enhanced the EMT features and invasiveness of OSCC cells. Further, depletion of CPAP enhanced the tumorigenicity of these cells in a xeno-transplant model. Importantly, CPAP loss-associated EMT features and invasiveness of multiple OSCC cells were attenuated upon depletion of EGFR in them. On the other hand, we found that CPAP protein levels were higher in EGF treated OSCC cells as well as in oral cancer tissues, suggesting that the frequently reported aberrant centriolar features of tumors are potentially a consequence, but not the cause, of tumor progression. Overall, our novel observations show that, in addition to its known indispensable role in centrosome biogenesis, CPAP also plays a vital role in suppressing tumorigenesis in OSCC by facilitating EGFR homeostasis.

19.
Int Immunol ; 21(3): 269-82, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19174473

RESUMO

GM-CSF plays an essential role in the differentiation of dendritic cells (DCs). Our studies have shown that GM-CSF treatment can induce semi-mature DCs and CD4+CD25+ regulatory T cells (Tregs) and suppress ongoing autoimmunity in mouse models. In this study, we examined the differences in the potential of GM-CSF to exert tolerogenic function on CD8a+ and CD8a- sub-populations of DCs in vivo. We show that GM-CSF modulates CD8a-, but not CD8a+ DCs in vivo, by inhibiting the surface expression of activation markers MHC II and CD80 and production of inflammatory cytokines such as IL-12 and IL-1beta. Self-antigen [mouse thyroglobulin (mTg)] presentation by GM-CSF-exposed CD8a- DCs to T cells from mTg-primed mice induced a profound increase in the frequency of forkhead box P3 (FoxP3)-expressing T cells compared with antigen presentation by GM-CSF-exposed CD8a+ DCs and control CD8a+ and CD8a- DCs. This tolerogenic property of GM-CD8a- DCs was abrogated when IL-12 was added. GM-CSF-exposed CD8a- DCs could also induce secretion of significantly higher amounts of IL-10 by T cells from mTg-primed mice. Importantly, adoptive transfer of CD8a- DCs from GM-CSF-treated SCID mice, but not untreated mice, into wild-type CBA/J mice prevented the development of experimental autoimmune thyroiditis (EAT) in the recipient animals upon immunization with mTg. Collectively, our results show that GM-CSF renders CD8a- DCs tolerogenic, and these DCs induce Foxp3+ and IL-10+ Tregs.


Assuntos
Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-10/metabolismo , Linfócitos T Reguladores/metabolismo , Tireoidite Autoimune/imunologia , Animais , Apresentação de Antígeno , Antígeno CD11c , Antígenos CD8 , Diferenciação Celular , Proliferação de Células , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Terapia de Imunossupressão , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos SCID , Tolerância a Antígenos Próprios , Linfócitos T Reguladores/imunologia , Tireoglobulina/imunologia , Tireoidite Autoimune/patologia , Tireoidite Autoimune/prevenção & controle , Vacinação
20.
J Immunol ; 181(12): 8323-34, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19050249

RESUMO

Studies have suggested a correlation between the decline in infectious diseases and increase in the incidence of type 1 diabetes (T1D) in developed countries. Pathogens influence the disease outcome through innate immune receptors such as TLRs. Here we report the effect of ligation of TLR2 and dectin 1 on APCs and the influence of innate immune response induced through these receptors on T1D. Exposure of APCs of NOD mice to zymosan, a fungal cell wall component that interacts with TLR2 and dectin 1, resulted in the release of significant amounts of IL-10, TGF-beta1, IL-2, and TNF-alpha. Treatment of pre- and early hyperglycemic mice with zymosan resulted in suppression of insulitis, leading to a significant delay in hyperglycemia. T cells from zymosan-treated mice showed reduced ability to induce diabetes in NOD-Scid mice compared with control T cells. Zymosan treatment induced suppression of T1D was associated with an increase in the L-selectin(high) T cell frequencies and enhanced suppressor function of CD4(+)CD25(+) T regulatory cells. Further, activation by anti-CD3-Ab induced larger amounts of TGF-beta1 and/or IL-10 production by CD4(+)CD25(+) and CD4(+)CD25(-) T cells from zymosan-treated mice. These results show that innate immune response through TLR2 and dectin 1 results in suppressor cytokine production by APCs and promotes the regulatory function of T cells. Our study demonstrates the possible involvement of signaling through innate immune receptors such as TLR2 and dectin 1 in reduced T1D incidence under the conditions of low hygiene, and the potential of targeting them for treating T1D.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Imunidade Inata , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptor 2 Toll-Like/fisiologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Cultivadas , Técnicas de Cocultura , Cruzamentos Genéticos , Citocinas/biossíntese , Citocinas/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Hiperglicemia/genética , Hiperglicemia/imunologia , Hiperglicemia/prevenção & controle , Hiperinsulinismo/genética , Hiperinsulinismo/prevenção & controle , Lectinas Tipo C , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estado Pré-Diabético/genética , Estado Pré-Diabético/imunologia , Zimosan/administração & dosagem , Zimosan/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA