Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 21(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207437

RESUMO

The novel coronavirus SARS-CoV-2 that causes the disease COVID-19 has forced us to go into our homes and limit our physical interactions with others. Economies around the world have come to a halt, with non-essential businesses being forced to close in order to prevent further propagation of the virus. Developing countries are having more difficulties due to their lack of access to diagnostic resources. In this study, we present an approach for detecting COVID-19 infections exclusively on the basis of self-reported symptoms. Such an approach is of great interest because it is relatively inexpensive and easy to deploy at either an individual or population scale. Our best model delivers a sensitivity score of 0.752, a specificity score of 0.609, and an area under the curve for the receiver operating characteristic of 0.728. These are promising results that justify continuing research efforts towards a machine learning test for detecting COVID-19.


Assuntos
COVID-19 , Teste para COVID-19 , Humanos , Aprendizado de Máquina , Curva ROC , SARS-CoV-2
2.
Bol Asoc Med P R ; 104(4): 50-3, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23763225

RESUMO

Gaucher's disease is the most common of the lysosomal storage diseases; however, with a current worldwide incidence of 1/75,000, it is still a rare occurrence. We present a case of Gaucher's disease type 1 in a Hispanic patient, the first incidence of this specific subtype of Gaucher's disease to be reported in Puerto Rico. Due to the patient's uncharacteristic presentation of negative initial bone marrow biopsy followed by the findings of Gaucher cells on splenic tissue examination, we investigate the specificity and sensitivity of various diagnostic methods to the disease as evidenced in the current literature. Physician awareness of an effective diagnostic approach as illustrated by this report is critical for the early diagnosis of Gaucher's disease so as to prevent disease progression and increased patient morbidity.


Assuntos
Doença de Gaucher/diagnóstico , Adulto , Humanos , Masculino
3.
Virology ; 553: 9-22, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33197754

RESUMO

During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.


Assuntos
Caulimovirus/fisiologia , Corpos de Inclusão Viral/fisiologia , Transativadores/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Corpos Enovelados/metabolismo , Diacetil/análogos & derivados , Diacetil/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Corpos de Inclusão Viral/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Mutação , Folhas de Planta/virologia , Domínios Proteicos , Nicotiana/virologia , Transativadores/química , Transativadores/genética
4.
Sci Rep ; 11(1): 1399, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446805

RESUMO

SHP2 is a ubiquitous tyrosine phosphatase involved in regulating both tumor and immune cell signaling. In this study, we discovered a novel immune modulatory function of SHP2. Targeting this protein with allosteric SHP2 inhibitors promoted anti-tumor immunity, including enhancing T cell cytotoxic function and immune-mediated tumor regression. Knockout of SHP2 using CRISPR/Cas9 gene editing showed that targeting SHP2 in cancer cells contributes to this immune response. Inhibition of SHP2 activity augmented tumor intrinsic IFNγ signaling resulting in enhanced chemoattractant cytokine release and cytotoxic T cell recruitment, as well as increased expression of MHC Class I and PD-L1 on the cancer cell surface. Furthermore, SHP2 inhibition diminished the differentiation and inhibitory function of immune suppressive myeloid cells in the tumor microenvironment. SHP2 inhibition enhanced responses to anti-PD-1 blockade in syngeneic mouse models. Overall, our study reveals novel functions of SHP2 in tumor immunity and proposes that targeting SHP2 is a promising strategy for cancer immunotherapy.


Assuntos
Imunidade Celular , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais/genética
5.
Plant Sci ; 291: 110364, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928683

RESUMO

Phenolic compounds are among the most diverse and widespread of specialized plant compounds and underly many important agronomic traits. Our comprehensive analysis of the maize genome unraveled new aspects of the genes involved in phenylpropanoid, monolignol, and flavonoid production in this important crop. Remarkably, just 19 genes accounted for 70 % of the overall mRNA accumulation of these genes across 95 tissues, indicating that these are the main contributors to the flux of phenolic metabolites. Eighty genes with intermediate to low expression play minor and more specialized roles. Remaining genes are likely undergoing loss of function or are expressed in limited cell types. Phylogenetic and expression analyses revealed which members of gene families governing metabolic entry and branch points exhibit duplication, subfunctionalization, or loss of function. Co-expression analysis applied to genes in sequential biosynthetic steps revealed that certain isoforms are highly co-expressed and are candidates for metabolic complexes that ensure metabolite delivery to correct cellular compartments. Co-expression of biosynthesis genes with transcription factors discovered connections that provided candidate components for regulatory modules governing this pathway. Our study provides a comprehensive analysis of maize phenylpropanoid related genes, identifies major pathway contributors, and novel candidate enzymatic and regulatory modules of the metabolic network.


Assuntos
Redes Reguladoras de Genes , Fenóis/metabolismo , Zea mays/genética , Genoma de Planta , Filogenia , Zea mays/metabolismo
6.
Cancer Res ; 80(19): 4278-4287, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32747364

RESUMO

Advanced ovarian cancers are a leading cause of cancer-related death in women and are currently treated with surgery and chemotherapy. This standard of care is often temporarily successful but exhibits a high rate of relapse, after which, treatment options are few. Here we investigate whether biomarker-guided use of multiple targeted therapies, including small molecules and antibody-drug conjugates, is a viable alternative. A panel of patient-derived ovarian cancer xenografts (PDX), similar in genetics and chemotherapy responsiveness to human tumors, was exposed to 21 monotherapies and combination therapies. Three monotherapies and one combination were found to be active in different subsets of PDX. Analysis of gene expression data identified biomarkers associated with responsiveness to each of the three targeted therapies, none of which directly inhibits an oncogenic driver. While no single treatment had as high a response rate as chemotherapy, nearly 90% of PDXs were eligible for and responded to at least one biomarker-guided treatment, including tumors resistant to standard chemotherapy. The distribution of biomarker positivity in The Cancer Genome Atlas data suggests the potential for a similar precision approach in human patients. SIGNIFICANCE: This study exploits a panel of patient-derived xenografts to demonstrate that most ovarian tumors can be matched to effective biomarker-guided treatments.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/genética , Neoplasias Ovarianas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/mortalidade , Carcinoma Epitelial do Ovário/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Terapia de Alvo Molecular/métodos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Medicina de Precisão , Estudo de Prova de Conceito
7.
Mol Cancer Ther ; 18(7): 1323-1334, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31068384

RESUMO

FGFR1 was recently shown to be activated as part of a compensatory response to prolonged treatment with the MEK inhibitor trametinib in several KRAS-mutant lung and pancreatic cancer cell lines. We hypothesize that other receptor tyrosine kinases (RTK) are also feedback-activated in this context. Herein, we profile a large panel of KRAS-mutant cancer cell lines for the contribution of RTKs to the feedback activation of phospho-MEK following MEK inhibition, using an SHP2 inhibitor (SHP099) that blocks RAS activation mediated by multiple RTKs. We find that RTK-driven feedback activation widely exists in KRAS-mutant cancer cells, to a less extent in those harboring the G13D variant, and involves several RTKs, including EGFR, FGFR, and MET. We further demonstrate that this pathway feedback activation is mediated through mutant KRAS, at least for the G12C, G12D, and G12V variants, and wild-type KRAS can also contribute significantly to the feedback activation. Finally, SHP099 and MEK inhibitors exhibit combination benefits inhibiting KRAS-mutant cancer cell proliferation in vitro and in vivo These findings provide a rationale for exploration of combining SHP2 and MAPK pathway inhibitors for treating KRAS-mutant cancers in the clinic.


Assuntos
Acrilonitrila/análogos & derivados , Compostos de Anilina/uso terapêutico , Neoplasias/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Acrilonitrila/farmacologia , Acrilonitrila/uso terapêutico , Compostos de Anilina/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cancer Ther ; 18(12): 2368-2380, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31439712

RESUMO

KRAS, an oncogene mutated in nearly one third of human cancers, remains a pharmacologic challenge for direct inhibition except for recent advances in selective inhibitors targeting the G12C variant. Here, we report that selective inhibition of the protein tyrosine phosphatase, SHP2, can impair the proliferation of KRAS-mutant cancer cells in vitro and in vivo using cell line xenografts and primary human tumors. In vitro, sensitivity of KRAS-mutant cells toward the allosteric SHP2 inhibitor, SHP099, is not apparent when cells are grown on plastic in 2D monolayer, but is revealed when cells are grown as 3D multicellular spheroids. This antitumor activity is also observed in vivo in mouse models. Interrogation of the MAPK pathway in SHP099-treated KRAS-mutant cancer models demonstrated similar modulation of p-ERK and DUSP6 transcripts in 2D, 3D, and in vivo, suggesting a MAPK pathway-dependent mechanism and possible non-MAPK pathway-dependent mechanisms in tumor cells or tumor microenvironment for the in vivo efficacy. For the KRASG12C MIAPaCa-2 model, we demonstrate that the efficacy is cancer cell intrinsic as there is minimal antiangiogenic activity by SHP099, and the effects of SHP099 is recapitulated by genetic depletion of SHP2 in cancer cells. Furthermore, we demonstrate that SHP099 efficacy in KRAS-mutant models can be recapitulated with RTK inhibitors, suggesting RTK activity is responsible for the SHP2 activation. Taken together, these data reveal that many KRAS-mutant cancers depend on upstream signaling from RTK and SHP2, and provide a new therapeutic framework for treating KRAS-mutant cancers with SHP2 inhibitors.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Taquicininas/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias/patologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Refract Surg ; 23(9): 941-3, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18041251

RESUMO

PURPOSE: To report the clinical features, management, and outcome of a patient who developed bilateral ectasia after photorefractive keratectomy (PRK). METHODS: Case report of a 35-year-old man who underwent bilateral PRK. Preoperative uncorrected visual acuity was 20/200 in the right eye and 20/100 in the left eye. The patient's history was unremarkable and he denied a family history of ocular disorders. RESULTS: Two weeks after surgery, the patient presented with loss of visual acuity in both eyes. Uncorrected visual acuity was 20/80 in the right eye and 20/200 in the left eye. Objective refraction could not be obtained. Slit-lamp microscopy showed corneal thinning in both eyes. After examining the patient's family, his sister was found to have clinical and topographic keratoconus. CONCLUSIONS: Ectasia is a rare complication of PRK. We report the occurrence of bilateral ectasia after PRK in a patient with asymmetric bowtie topographies. We recommend that refractive surgery, even surface techniques such as PRK, be avoided in patients with a family history of keratoconus.


Assuntos
Doenças da Córnea/etiologia , Ceratectomia Fotorrefrativa/efeitos adversos , Adulto , Contraindicações , Córnea/patologia , Doenças da Córnea/diagnóstico , Doenças da Córnea/patologia , Topografia da Córnea , Dilatação Patológica/diagnóstico , Dilatação Patológica/etiologia , Dilatação Patológica/patologia , Humanos , Ceratocone/genética , Lasers de Excimer , Masculino , Transtornos da Visão/etiologia , Transtornos da Visão/fisiopatologia , Visão Binocular , Acuidade Visual
10.
Mol Plant ; 10(3): 498-515, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-27871810

RESUMO

The translation of the genotype into phenotype, represented for example by the expression of genes encoding enzymes required for the biosynthesis of phytochemicals that are important for interaction of plants with the environment, is largely carried out by transcription factors (TFs) that recognize specific cis-regulatory elements in the genes that they control. TFs and their target genes are organized in gene regulatory networks (GRNs), and thus uncovering GRN architecture presents an important biological challenge necessary to explain gene regulation. Linking TFs to the genes they control, central to understanding GRNs, can be carried out using gene- or TF-centered approaches. In this study, we employed a gene-centered approach utilizing the yeast one-hybrid assay to generate a network of protein-DNA interactions that participate in the transcriptional control of genes involved in the biosynthesis of maize phenolic compounds including general phenylpropanoids, lignins, and flavonoids. We identified 1100 protein-DNA interactions involving 54 phenolic gene promoters and 568 TFs. A set of 11 TFs recognized 10 or more promoters, suggesting a role in coordinating pathway gene expression. The integration of the gene-centered network with information derived from TF-centered approaches provides a foundation for a phenolics GRN characterized by interlaced feed-forward loops that link developmental regulators with biosynthetic genes.


Assuntos
Fenóis/metabolismo , Zea mays/genética , Zea mays/metabolismo , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Nat Med ; 21(11): 1318-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26479923

RESUMO

Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.


Assuntos
Antineoplásicos/uso terapêutico , Ensaios de Triagem em Larga Escala/métodos , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias da Mama/tratamento farmacológico , Carcinoma/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Camundongos , Transplante de Neoplasias , Neoplasias Pancreáticas/tratamento farmacológico , Reprodutibilidade dos Testes , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico
12.
Mycopathologia ; 156(4): 263-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14682449

RESUMO

Blastomycosis is an acute or chronic primary infection of the respiratory system, endemic in North America (United States of America and Canada), Africa and Asia. We report a case in Mexico, in a three years old child who had been born in California and lived in Chicago, U.S.A. The patient presented pulmonary symptoms prior to development of a skin ulcer. Blastomyces dermatitidis was identified by mycological and molecular procedures. The patient was successfully treated with amphotericin B, oral ketoconazole and itraconazole.


Assuntos
Blastomyces/crescimento & desenvolvimento , Blastomicose/patologia , Pneumopatias Fúngicas/patologia , Úlcera Cutânea/patologia , Antifúngicos/uso terapêutico , Blastomicose/epidemiologia , Blastomicose/microbiologia , Chicago/etnologia , Pré-Escolar , Humanos , Pneumopatias Fúngicas/epidemiologia , Pneumopatias Fúngicas/microbiologia , Masculino , México , Úlcera Cutânea/epidemiologia , Úlcera Cutânea/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA