Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38180251

RESUMO

The effect of ring stiffness and pressure on the glassy dynamics of a thermal assembly of two-dimensional ring polymers is investigated using extensive coarse-grained molecular dynamics simulations. In all cases, dynamical slowing down is observed with increasing pressure, and thereby, a phase space for equilibrium dynamics is identified in the plane of the obtained monomer density and ring stiffness. When the rings are highly flexible, i.e., have low ring stiffness, glassiness sets in via the crowding of crumpled polymers, which take on a globular form. In contrast, at large ring stiffness, when the rings tend to have large asphericity under compaction, we observe the emergence of local domains having orientational ordering at high pressures. Therefore, our simulations highlight how varying the deformability of rings leads to contrasting mechanisms in driving the system toward the glassy regime.

2.
Proteins ; 91(6): 831-846, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36645312

RESUMO

The AMP-activated protein kinase (AMPK) is known to be activated by the protein tyrosine phosphatase non-receptor type 12 (PTP-PEST) under hypoxic conditions. This activation is mediated by tyrosine dephosphorylation of the AMPKα subunit. However, the identity of the phosphotyrosine residues that PTP-PEST dephosphorylates remains unknown. In this study, we first predicted the structure of the complex of the AMPKα2 subunit and PTP-PEST catalytic domain using bioinformatics tools and further confirmed the stability of the complex using molecular dynamics simulations. Evaluation of the protein-protein interfaces indicated that residue Tyr232 is the most likely dephosphorylation site on AMPKα2. In addition, we explored the effect of phosphorylation of PTP-PEST residue Tyr64 on the stability of the complex. Phosphorylation of the highly conserved Tyr64, an interface residue, enhances the stability of the complex via the rearrangement of a network of electrostatic interactions in conjunction with conformational changes in the catalytic WPD loop. We generated a phosphomimetic (PTP-PEST-Y64D) mutant and used co-immunoprecipitation to study the effect of PTP-PEST phosphorylation on AMPKα2 binding. The mutant exhibited an increased affinity for AMPKα2 and corroborated the in-silico predictions. Together, our findings present a plausible structural basis of AMPK regulation by PTP-PEST and show how phosphorylation of PTP-PEST affects its interaction with AMPKα2.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Tirosina Fosfatase não Receptora Tipo 12 , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Tirosina Fosfatases/química , Fosforilação , Domínio Catalítico
3.
Langmuir ; 39(12): 4406-4412, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36920370

RESUMO

Understanding the emergence and role of lipid packing defects in the detection and subsequent partitioning of antimicrobial agents into bacterial membranes is essential for gaining insights into general antimicrobial mechanisms. Herein, using methacrylate polymers as a model platform, we investigate the effects of inclusion of various functional groups in the biomimetic antimicrobial polymer design on the aspects of lipid packing defects in model bacterial membranes. Two antimicrobial polymers are considered: ternary polymers composed of cationic, hydrophobic, and polar moieties and binary polymers with only cationic and hydrophobic moieties. We find that differing modes of insertion of these two polymers lead to different packing defects in the bacterial membrane. While insertion of both binary and ternary polymers leads to an enhanced number of deep defects in the upper leaflet, shallow defects are moderately enhanced upon interaction with ternary polymers only. We provide conclusive evidence that insertion of antimicrobial polymers in bacterial membrane is preceded by sensing of interfacial lipid packing defects. Our simulation results show that the hydrophobic groups are inserted at a single colocalized deep defect site for both binary and ternary polymers. However, the presence of polar groups in the ternary polymers use the shallow defects close to the lipid-water interface, in addition, to insert into the membrane, which leads to a more folded conformation of the ternary polymer in the membrane environment, and hence a different membrane partitioning mechanism compared to the binary polymer, which acquires an amphiphilic conformation.


Assuntos
Anti-Infecciosos , Polímeros , Polímeros/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Metacrilatos/química , Conformação Molecular , Lipídeos , Bicamadas Lipídicas/química
4.
J Chem Phys ; 158(11): 114903, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948827

RESUMO

Extensive coarse-grained molecular dynamics simulations are performed to investigate the conformational phase diagram of a neutral polymer in the presence of attractive crowders. We show that, for low crowder densities, the polymer predominantly shows three phases as a function of both intra-polymer and polymer-crowder interactions: (1) weak intra-polymer and weak polymer-crowder attractive interactions induce extended or coil polymer conformations (phase E), (2) strong intra-polymer and relatively weak polymer-crowder attractive interactions induce collapsed or globular conformations (phase CI), and (3) strong polymer-crowder attractive interactions, regardless of intra-polymer interactions, induce a second collapsed or globular conformation that encloses bridging crowders (phase CB). The detailed phase diagram is obtained by determining the phase boundaries delineating the different phases based on an analysis of the radius of gyration as well as bridging crowders. The dependence of the phase diagram on strength of crowder-crowder attractive interactions and crowder density is clarified. We also show that when the crowder density is increased, a third collapsed phase of the polymer emerges for weak intra-polymer attractive interactions. This crowder density-induced compaction is shown to be enhanced by stronger crowder-crowder attraction and is different from the depletion-induced collapse mechanism, which is primarily driven by repulsive interactions. We also provide a unified explanation of the observed re-entrant swollen/extended conformations of the earlier simulations of weak and strongly self-interacting polymers in terms of crowder-crowder attractive interactions.

5.
J Chem Phys ; 159(20)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38010332

RESUMO

Using extensive molecular dynamics simulations, we obtain the conformational phase diagram of a charged polymer in the presence of oppositely charged counterions and neutral attractive crowders for monovalent, divalent, and trivalent counterion valencies. We demonstrate that the charged polymer can exist in three phases: (1) an extended phase for low charge densities and weak polymer-crowder attractive interactions [Charged Extended (CE)]; (2) a collapsed phase for high charge densities and weak polymer-crowder attractive interactions, primarily driven by counterion condensation [Charged Collapsed due to Intra-polymer interactions [(CCI)]; and (3) a collapsed phase for strong polymer-crowder attractive interactions, irrespective of the charge density, driven by crowders acting as bridges or cross-links [Charged Collapsed due to Bridging interactions [(CCB)]. Importantly, simulations reveal that the interaction with crowders can induce collapse, despite the presence of strong repulsive electrostatic interactions, and can replace condensed counterions to facilitate a direct transition from the CCI and CE phases to the CCB phase.

6.
Proteins ; 90(5): 1179-1189, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35006623

RESUMO

Mutation of an invariant aspartate residue in the binding pocket of 14-3-3ζ isoform to alanine dramatically reduced phosphopeptide binding and induced opening of the binding pocket. Here we use extensive molecular dynamics simulations to understand the role of D124 residue in ligand binding. The simulations show that in the absence of phosphopeptide, the D124A mutation leads to binding pocket reorganization including widening up of the binding pocket at the major groove and repositioning of N173, a key residue that interacts with the main chain of phosphopeptide. These structural changes would interfere with the efficient binding of the peptide, corroborating the experimental observations. Both gain and loss of electrostatic interactions in the form of salt bridges strongly indicate a rearrangement of the network of interactions within the binding pocket. Limited proteolysis coupled mass spectrometry (lip-MS) of the apo and holo forms of wild type (WT) and mutant protein shows a peptide binding helix otherwise buried in the WT protein was particularly accessible to trypsin in the apo form of the mutant protein and the region was mapped to 158-186 amino acid residues of 14-3-3ζ. These results further confirm the dynamic nature of D124A mutant. Unlike other basic residues, the invariant D124 facilitates peptide binding by maintaining the geometry of interacting residues and by enforcing the structural integrity of amphipathic pocket.


Assuntos
Proteínas 14-3-3/química , Fosfopeptídeos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Humanos , Simulação de Dinâmica Molecular , Proteínas Mutantes/genética , Mutação , Fosfopeptídeos/genética , Fosfopeptídeos/metabolismo , Ligação Proteica
7.
J Membr Biol ; 255(2-3): 129-142, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35218393

RESUMO

The importance of disulphide bond in mediating viral peptide entry into host cells is well known. In the present work, we elucidate the role of disulphide (SS) bond in partitioning mechanism of membrane-active Hepatitis A Virus-2B (HAV-2B) peptide, which harbours three cysteine residues promoting formation of multiple SS-bonded states. The inclusion of SS-bond not only results in a compact conformation but also induces distorted α-helical hairpin geometry in comparison to SS-free state. Owing to these, the hydrophobic residues get buried, restricting the insertion of SS-bonded HAV-2B peptide into lipid packing defects and thus the partitioning of the peptide is completely or partly abolished. In this way, the disulphide bond can potentially regulate the partitioning of HAV-2B peptide such that the membrane remodelling effects of this viral peptide are significantly reduced. The current findings may have potential implications in drug designing, targeting the HAV-2B protein by promoting disulphide bond formation within its membrane-active region.


Assuntos
Vírus da Hepatite A , Peptídeos , Cisteína/química , Dissulfetos/química , Dissulfetos/metabolismo , Vírus da Hepatite A/química , Vírus da Hepatite A/metabolismo , Membranas , Domínios Proteicos
8.
Soft Matter ; 18(15): 2959-2967, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35348146

RESUMO

Using extensive molecular dynamics simulations, we investigate the slowdown of dynamics in a 3D system of ring polymers by varying the ambient pressure and the stiffness of the rings. Our study demonstrates that the stiffness of the rings determines the dynamics of the ring polymers, leading to glassiness at lower pressures for stiffer rings. The threading of the ring polymers, a unique feature that emerges only due to the topological nature of such polymers in three dimensions, is shown to be the determinant feature of dynamical slowdown, albeit only in a certain stiffness range. Our results suggest a possible framework for exploring the phase space spanned by ring stiffness and pressure to obtain spontaneously emerging topologically constrained polymer glasses.

9.
Soft Matter ; 17(8): 2090-2103, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33439212

RESUMO

Using atomistic molecular dynamics simulations, we study the interaction of ternary methacrylate polymers, composed of charged cationic, hydrophobic and neutral polar groups, with model bacterial membrane. Our simulation data shows that the random ternary polymers can penetrate deep into the membrane interior and partitioning of even a single polymer has a pronounced effect on the membrane structure. Lipid reorganization, on polymer binding, shows a strong affinity of the ternary polymer for anionic POPG lipids and the same is compared with the control case of binary polymers (only cationic and hydrophobic groups). While binary polymers exhibit strong propensity of acquired amphiphilic conformations upon membrane insertion, our results strongly suggest that such amphiphilic conformations are absent in the case of random ternary polymers. The ternary polymers adopt a more folded conformation, staying aligned in the direction of the membrane normal and subsequently penetrating deeper into the membrane interior suggesting a novel membrane partitioning mechanism without amphiphilic conformations. Finally, we also examine the interactions of ternary polymer aggregates with model bacterial membranes, which show that replacing some of the hydrophobic groups by polar groups leads to weakly held ternary aggregates enabling them to undergo rapid partitioning and insertion into membrane interior. Our work thus underscores the role of inclusion of polar groups into the framework of traditional binary biomimetic antimicrobial polymers and suggests different mode of partitioning into bacterial membranes, mimicking antimicrobial mechanism of globular antimicrobial peptides like Defensin.


Assuntos
Anti-Infecciosos , Polímeros , Biomimética , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Proteínas Citotóxicas Formadoras de Poros
10.
Soft Matter ; 17(34): 7963-7977, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34378608

RESUMO

Understanding viral peptide detection and partitioning and the subsequent host membrane composition-based response is essential for gaining insights into the viral mechanism. Here, we probe the crucial role of the presence of membrane lipid packing defects, depending on the membrane composition, in allowing the viral peptide belonging to C-terminal Hepatitis A Virus-2B (HAV-2B) to detect, attach and subsequently partition into host cell membrane mimics. Using molecular dynamics simulations, we conclusively show that the hydrophobic residues in the viral peptide detect transiently present lipid packing defects, insert themselves into such defects, form anchor points and facilitate the partitioning of the peptide, thereby inducing membrane disruption. We also show that the presence of cholesterol significantly alters such lipid packing defects, both in size and in number, thus mitigating the partitioning of the membrane active viral peptide into cholesterol-rich membranes. Our results are in excellent agreement with previously published experimental data and further explain the role of lipid defects in understanding such data. These results show differential ways in which the presence and absence of cholesterol can alter the permeability of the host membranes to the membrane active peptide component of HAV-2B virus, via lipid packing defects, and can possibly be a part of the general membrane detection mechanism for viroporins.


Assuntos
Vírus da Hepatite A , Membrana Celular , Colesterol , Bicamadas Lipídicas , Lipídeos de Membrana , Simulação de Dinâmica Molecular , Peptídeos
11.
J Membr Biol ; 252(4-5): 331-342, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187156

RESUMO

The membrane-active protein Nogo-66 is found to induce interdigitation in dimyristoylphosphocholine membranes. Extensive molecular dynamics simulations have been employed to probe the interactions of Nogo-66 with these model membranes. This phase change happens when the temperature is close to the main transition temperature of the membrane (Tm) and only in the presence of the protein. No similar interdigitation of the membrane lipids was observed temperatures well above Tm in the presence of the protein. In addition, in protein-free simulations, no interdigitation of the membrane lipids was found both at temperatures near or well above Tm indicating that the observed effect is caused by the interactions of Nogo-66 with the membrane. Analysis of the simulations suggest protein-membrane interactions, even if transient, alter the lifetimes of lipid head defects and can potentially alter the effective Tm and cause interdigitation. This study emphasize the importance of membrane-active proteins and their interactions with membranes leading to phase transitions which would affect other membrane-related processes such as domain formation.


Assuntos
Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Proteínas Nogo/química , Humanos , Domínios Proteicos
12.
J Chem Phys ; 151(24): 244901, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893876

RESUMO

We present results from molecular dynamics simulations of a spherically confined neutral polymer in the presence of crowding particles, studying polymer shapes and conformations as a function of the strength of the attraction to the confining wall, solvent quality, and the density of crowders. The conformations of the polymer under good solvent conditions are weakly dependent on crowder particle density, even when the polymer is strongly confined. In contrast, under poor solvent conditions, when the polymer assumes a collapsed conformation when unconfined, it can exhibit transitions to two different adsorbed phases, when either the interaction with the wall or the density of crowder particles is changed. One such transition involves a desorbed collapsed phase change to an adsorbed extended phase as the attraction of the polymer towards the confining wall is increased. Such an adsorbed extended phase can exhibit a second transition to an ordered adsorbed collapsed phase as the crowder particle density is increased. The ordered adsorbed collapsed phase of the polymer differs significantly in its structure from the desorbed collapsed phase. We revisit the earlier understanding of the adsorption of confined polymers on attractive surfaces in light of our results.

13.
J Chem Phys ; 151(7): 074901, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438700

RESUMO

Extensive molecular dynamics simulations have been employed to probe the effects of salts on the kinetics and dynamics of early-stage aggregated structures of steric zipper peptides in water. The simulations reveal that the chemical identity and valency of cation in the salt play a crucial role in aggregate dynamics and morphology of the peptides. Sodium ions induce the most aggregated structures, but this is not replicated equivalently by potassium ions which are also monovalent. Divalent magnesium ions induce aggregation but to a lesser extent than that of sodium, and their interactions with the charged peptides are also significantly different. The aggregate morphology in the presence of monovalent sodium ions is a compact structure with interpenetrating peptides, which differs from the more loosely connected peptides in the presence of either potassium or magnesium ions. The different ways in which the cations effectively renormalize the charges of peptides are suggested to be the cause of the differential effects of different salts studied here. These simulations underscore the importance of understanding both the valency and nature of salts in biologically relevant aggregated structures.

15.
Bioconjug Chem ; 28(5): 1340-1350, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28379682

RESUMO

Synthetic polymers have been used as a molecular platform to develop host-defense antimicrobial peptide (AMP) mimetics which are effective in killing drug-resistant bacteria. In this topical review, we will discuss the AMP-mimetic design and chemical optimization strategies as well as the biological and biophysical implications of AMP mimicry by synthetic polymers. Traditionally, synthetic polymers have been used as a chemical means to replicate the chemical functionalities and physicochemical properties of AMPs (e.g., cationic charge, hydrophobicity) to recapitulate their mode of action. However, we propose a new perception that AMP-mimetic polymers are an inherently bioactive platform as whole molecules, which mimic more than the side chain functionalities of AMPs. The tunable nature and chemical simplicity of synthetic random polymers facilitate the development of potent, cost-effective, broad-spectrum antimicrobials. The polymer-based approach offers the potential for many antimicrobial applications to be used directly in solution or attached to surfaces to fight against drug-resistant bacteria.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Biomimética , Polímeros/síntese química , Polímeros/farmacologia
16.
Soft Matter ; 13(41): 7665-7676, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28991313

RESUMO

Using atomistic molecular dynamics simulations, the role of lipid composition in the interactions of multiple methacrylate antimicrobial polymer agents with model membranes, and the consequent response of the membranes is studied. In our earlier study, methacrylate polymers were observed to induce phase demixing and associated thickness mismatch in a POPE-POPG model microbial membrane. In this work, we probe (1) the role of varying the degree of saturation in lipid acyl chains in the membrane interactions of methacrylate polymers, and (2) whether electrostatics (addition of anionic lipids) can influence the interactions of the polymers with model mammalian membranes. Lipid composition is observed to significantly modify membrane-polymer interactions, leading to differences in both the mode of partitioning and the conformations adopted by the polymers, in addition to impacting membrane properties differently. The results strongly suggest that the oft-cited electrostatic interactions between the antimicrobial agents and the microbial membranes do not fully account for the recognition and subsequent partitioning of the antimicrobial agents. The ability of the methacrylate polymers to sense interfacial lipid packing defects, determined by the PE/PC head groups of lipids, is also found to be influential in their membrane partitioning. Deliberate inclusion of charged anionic lipids into a model mammalian membrane, leading to additional favorable electrostatics, does not reproduce a similar polymer partitioning mechanism to that in its microbial counterpart. The differences observed in the interactions of methacrylate polymers with the various model membranes can be instrumental in extending our understanding of underlying modes of membrane disruption by general antimicrobial agents as well.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Ácidos Polimetacrílicos/farmacologia , Eletricidade Estática
17.
Soft Matter ; 13(9): 1862-1872, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177005

RESUMO

We perform extensive molecular dynamics simulations of a highly charged, collapsed, flexible polyelectrolyte chain in a poor solvent for the case when the electrostatic interactions, characterized by the reduced Bjerrum length lB, are strong. We find the existence of several sub-regimes in the dependence of the gyration radius of the chain Rg on lB characterized by Rg ∼ l. In contrast to a good solvent, the exponent γ for a poor solvent crucially depends on the size and valency of the counterions. To explain the different sub-regimes, we generalize the existing counterion fluctuation theory by including a more complete account of all possible volume interactions in the free energy of the polyelectrolyte chain. We also show that the presence of condensed counterions modifies the effective attraction among the chain monomers and modulates the sign of the second virial coefficient under poor solvent conditions.

18.
J Chem Phys ; 147(14): 144903, 2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-29031260

RESUMO

Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.


Assuntos
Modelos Químicos , Polieletrólitos/química , Conformação Molecular , Simulação de Dinâmica Molecular , Ácidos Nucleicos/química , Proteínas/química
19.
Phys Rev Lett ; 117(14): 147801, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740827

RESUMO

We perform extensive molecular dynamics simulations of a charged polymer in a good solvent in the regime where the chain is collapsed. We analyze the dependence of the gyration radius R_{g} on the reduced Bjerrum length ℓ_{B} and find two different regimes. In the first one, called a weak electrostatic regime, R_{g}∼ℓ_{B}^{-1/2}, which is consistent only with the predictions of the counterion-fluctuation theory. In the second one, called a strong electrostatic regime, we find R_{g}∼ℓ_{B}^{-1/5}. To explain the novel regime we modify the counterion-fluctuation theory.

20.
J Chem Phys ; 144(10): 104502, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26979692

RESUMO

Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl2) have a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH4) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA