Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cereb Cortex ; 28(12): 4454-4471, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307491

RESUMO

Neural stem cells (NSCs) in the adult mouse hippocampus occur in a specific neurogenic niche, where a multitude of extracellular signaling molecules converges to regulate NSC proliferation as well as fate and functional integration. However, the underlying mechanisms how NSCs react to extrinsic signals and convert them to intracellular responses still remains elusive. NSCs contain a functional endocannabinoid system, including the cannabinoid type-1 receptor (CB1). To decipher whether CB1 regulates adult neurogenesis directly or indirectly in vivo, we performed NSC-specific conditional inactivation of CB1 by using triple-transgenic mice. Here, we show that lack of CB1 in NSCs is sufficient to decrease proliferation of the stem cell pool, which consequently leads to a reduction in the number of newborn neurons. Furthermore, neuronal differentiation was compromised at the level of dendritic maturation pointing towards a postsynaptic role of CB1 in vivo. Deteriorated neurogenesis in NSC-specific CB1 knock-outs additionally resulted in reduced long-term potentiation in the hippocampal formation. The observed cellular and physiological alterations led to decreased short-term spatial memory and increased depression-like behavior. These results demonstrate that CB1 expressed in NSCs and their progeny controls neurogenesis in adult mice to regulate the NSC stem cell pool, dendritic morphology, activity-dependent plasticity, and behavior.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração , Células-Tronco Neurais/fisiologia , Neurogênese , Receptor CB1 de Canabinoide/fisiologia , Animais , Comportamento Animal , Hipocampo/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Receptor CB1 de Canabinoide/genética , Memória Espacial/fisiologia
2.
Sci Data ; 11(1): 545, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806530

RESUMO

Human and non-human primates have strikingly similar genomes, but they strongly differ in many brain-based processes (e.g., behaviour and cognition). While the functions of protein-coding genes have been extensively studied, rather little is known about the role of non-coding RNAs such as long non-coding RNAs (lncRNAs). Here, we predicted lncRNAs and analysed their expression pattern across different brain regions of human and non-human primates (chimpanzee, gorilla, and gibbon). Our analysis identified shared orthologous and non-orthologous lncRNAs, showing striking differences in the genomic features. Differential expression analysis of the shared orthologous lncRNAs from humans and chimpanzees revealed distinct expression patterns in subcortical regions (striatum, hippocampus) and neocortical areas while retaining a homogeneous expression in the cerebellum. Co-expression analysis of lncRNAs and protein-coding genes revealed massive proportions of co-expressed pairs in neocortical regions of humans compared to chimpanzees. Network analysis of co-expressed pairs revealed the distinctive role of the hub-acting orthologous lncRNAs in a region- and species-specific manner. Overall, our study provides novel insight into lncRNA driven gene regulatory landscape, neural regulation, brain evolution, and constitutes a resource for primate's brain lncRNAs.


Assuntos
Encéfalo , Primatas , RNA Longo não Codificante , Animais , Humanos , Encéfalo/metabolismo , Gorilla gorilla/genética , Hylobates/genética , Pan troglodytes/genética , Primatas/genética , RNA Longo não Codificante/genética , Especificidade da Espécie
3.
Cells ; 11(21)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359800

RESUMO

Upon chronic stress, a fraction of individuals shows stress resilience, which can prevent long-term mental dysfunction. The underlying molecular mechanisms are complex and have not yet been fully understood. In this study, we performed a data-driven behavioural stratification together with single-cell transcriptomics of the hippocampus in a mouse model of chronic social defeat stress. Our work revealed that in a sub-group exhibiting molecular responses upon chronic stress, the dorsal hippocampus is particularly involved in neuroimmune responses, angiogenesis, myelination, and neurogenesis, thereby enabling brain restoration and homeostasis after chronic stress. Based on these molecular insights, we applied rapamycin after the stress as a proof-of-concept pharmacological intervention and were able to substantially increase stress resilience. Our findings serve as a data resource and can open new avenues for further understanding of molecular processes underlying stress response and for targeted interventions supporting resilience.


Assuntos
Derrota Social , Estresse Psicológico , Camundongos , Masculino , Animais , Hipocampo , Neurogênese , Modelos Animais de Doenças
4.
Cancers (Basel) ; 12(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610610

RESUMO

Breast cancer is a major public health problem and the leading world cause of women death by cancer. Both the recurrence and mortality of breast cancer are mainly caused by the formation of metastasis. The long non-coding RNA H19, the precursor of miR-675, is involved in breast cancer development. The aim of this work was to determine the implication but, also, the relative contribution of H19 and miR-675 to the enhancement of breast cancer metastatic potential. We showed that both H19 and miR-675 increase the invasive capacities of breast cancer cells in xenografted transgenic zebrafish models. In vitro, H19 and miR-675 enhance the cell migration and invasion, as well as colony formation. H19 seems to induce the epithelial-to-mesenchymal transition (EMT), with a decreased expression of epithelial markers and an increased expression of mesenchymal markers. Interestingly, miR-675 simultaneously increases the expression of both epithelial and mesenchymal markers, suggesting the induction of a hybrid phenotype or mesenchymal-to-epithelial transition (MET). Finally, we demonstrated for the first time that miR-675, like its precursor H19, increases the stemness properties of breast cancer cells. Altogether, our data suggest that H19 and miR-675 could enhance the aggressiveness of breast cancer cells through both common and different mechanisms.

5.
Biochim Biophys Acta Gene Regul Mech ; 1860(10): 1079-1093, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28887218

RESUMO

The histone lysine methyltransferase EZH2, as part of the Polycomb Repressive Complex 2 (PRC2), mediates H3K27me3 methylation which is involved in gene expression program repression. Through its action, EZH2 controls cell-fate decisions during the development and the differentiation processes. Here, we report the generation and the characterization of an ezh2-deficient zebrafish line. In contrast to its essential role in mouse early development, loss of ezh2 function does not affect zebrafish gastrulation. Ezh2 zebrafish mutants present a normal body plan but die at around 12 dpf with defects in the intestine wall, due to enhanced cell death. Thus, ezh2-deficient zebrafish can initiate differentiation toward the different developmental lineages but fail to maintain the intestinal homeostasis. Expression studies revealed that ezh2 mRNAs are maternally deposited. Then, ezh2 is ubiquitously expressed in the anterior part of the embryos at 24 hpf, but its expression becomes restricted to specific regions at later developmental stages. Pharmacological inhibition of Ezh2 showed that maternal Ezh2 products contribute to early development but are dispensable to body plan formation. In addition, ezh2-deficient mutants fail to properly regenerate their spinal cord after caudal fin transection suggesting that Ezh2 and H3K27me3 methylation might also be involved in the process of regeneration in zebrafish.


Assuntos
Nadadeiras de Animais/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Regeneração/fisiologia , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/metabolismo , Animais , Proteína Potenciadora do Homólogo 2 de Zeste , Deleção de Genes , Metilação , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Cancer Lett ; 385: 198-206, 2017 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-27780718

RESUMO

Numerous genomic imprinting loci are regulated by long non-coding RNA (lncRNA). We have previously identified a new lncRNA at the H19/IGF2 locus transcribed in H19 antisense orientation and named 91H. This RNA is conserved among mammals. In mice, 91H regulates positively IGF2 expression from a novel promoter. However, in human the function of 91H at the H19/IGF2 locus remains largely undeciphered. Here, we observed that 91H, H19 and IGF2 are overexpressed in breast tumors. By using 91H-knockdown breast cancer cells, we demonstrated that 91H exerts oncogenic properties by promoting cell growth, migration and invasion as well as tumor growth in xenografted immunodeficient mouse model. Moreover, 91H-knockdown reduces the expression of H19 and IGF2 in breast cancer cells. By chromatin-immunoprecipitation and methylation studies, we found that 91H expression prevents histone and DNA methylation on the maternal allele at the H19/IGF2 locus. These results indicate that 91H, through epigenetic modifications, is responsible of the maintenance of H19/IGF2 genomic imprinting allowing the allele-specific expression of H19 and IGF2. Taken together, overexpression of 91H in breast cancer and 91H-induced epigenetic modifications on H19/IGF2 locus suggest that 91H may play essential role in breast cancer development. Further studies are needed to investigate their role in terms of diagnosis and therapeutic.


Assuntos
Neoplasias da Mama/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante/genética , Idoso , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Metilação de DNA , Feminino , Predisposição Genética para Doença , Impressão Genômica , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica , Fenótipo , Interferência de RNA , RNA Longo não Codificante/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral
7.
Front Genet ; 6: 165, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972893

RESUMO

Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential but having a pivotal role in numerous biological functions. Long non-coding RNAs act as regulators at different levels of gene expression including chromatin organization, transcriptional regulation, and post-transcriptional control. Misregulation of lncRNAs expression has been found to be associated to cancer and other human disorders. Here, we review the different types of lncRNAs, their mechanisms of action on genome formatting and expression and emphasized on the multifaceted action of the H19 lncRNA.

8.
Stem Cells Dev ; 24(10): 1252-62, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25567531

RESUMO

Understanding normal and cancer stem cells should provide insights into the origin of prostate cancer and their mechanisms of resistance to current treatment strategies. In this study, we isolated and characterized stem-like cells present in the immortalized human prostate cell line, RWPE-1. We used a reporter system with green fluorescent protein (GFP) driven by the promoter of s-SHIP (for stem-SH2-domain-containing 5'-inositol phosphatase) whose stem cell-specific expression has been previously shown. We observed that s-SHIP-GFP-expressing RWPE-1 cells showed stem cell characteristics such as increased expression of stem cell surface markers (CD44, CD166, TROP2) and pluripotency transcription factors (Oct4, Sox2), and enhanced sphere-forming capacity and resistance to arsenite-induced cell death. Concomitant increased expression of the long noncoding RNA H19 was observed, which prompted us to investigate a putative role in stemness for this oncofetal gene. Targeted suppression of H19 with siRNA decreased Oct4 and Sox2 gene expression and colony-forming potential in RWPE-1 cells. Conversely, overexpression of H19 significantly increased gene expression of these two transcription factors and the sphere-forming capacity of RWPE-1 cells. Analysis of H19 expression in various prostate and mammary human cell lines revealed similarities with Sox2 expression, suggesting that a functional relationship may exist between H19 and Sox2. Collectively, we provide the first evidence that s-SHIP-GFP promoter reporter offers a unique marker for the enrichment of human stem-like cell populations and highlight a role in stemness for the long noncoding RNA H19.


Assuntos
Genes Supressores de Tumor/fisiologia , Células-Tronco Neoplásicas/citologia , Regiões Promotoras Genéticas/genética , Próstata/citologia , RNA Longo não Codificante/genética , Linhagem Celular , Humanos , Masculino , Neoplasias da Próstata/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética
9.
Oncotarget ; 6(30): 29209-23, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26353930

RESUMO

H19 is a long non-coding RNA precursor of miR-675 microRNA. H19 is increasingly described to play key roles in the progression and metastasis of cancers from different tissue origins. We have previously shown that the H19 gene is activated by growth factors and increases breast cancer cell invasion. In this study, we established H19/miR-675 ectopic expression models of MDA-MB-231 breast cancer cells to further investigate the underlying mechanisms of H19 oncogenic action. We showed that overexpression of H19/miR-675 enhanced the aggressive phenotype of breast cancer cells including increased cell proliferation and migration in vitro, and increased tumor growth and metastasis in vivo. Moreover, we identified ubiquitin ligase E3 family (c-Cbl and Cbl-b) as direct targets of miR-675 in breast cancer cells. Using a luciferase assay, we demonstrated that H19, through its microRNA, decreased both c-Cbl and Cbl-b expression in all breast cancer cell lines tested. Thus, by directly binding c-Cbl and Cbl-b mRNA, miR-675 increased the stability and the activation of EGFR and c-Met, leading to sustained activation of Akt and Erk as well as enhanced cell proliferation and migration. Our data describe a novel mechanism of protumoral action of H19 in breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/enzimologia , Carcinogênese/metabolismo , Movimento Celular , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Proliferação de Células , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos SCID , MicroRNAs/genética , Metástase Neoplásica , Fenótipo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção
10.
J Thorac Dis ; 10(2): 544-546, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29607108
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA