Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Acc Chem Res ; 52(1): 44-52, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30480998

RESUMO

Atomically precise gold nanoclusters display properties that are unseen in larger nanoparticles. When the number of gold atoms is sufficiently small, the clusters exhibit molecular properties. Their study requires extensive use of classic molecular physical chemistry and, thus, methods such as vibrational spectroscopies, electrochemistry, density functional theory and molecular dynamics calculations, and of course nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. NMR and EPR studies have been mostly carried out on the benchmark, stable molecules Au25(SR)18, Au38(SR)24, Au102(SR)44, and Au144(SR)60 (where SR = thiolate). In this Account, we showcase examples primarily taken from our previous and ongoing NMR and EPR studies, which we hope will trigger further interest in the use of these sensitive, though often underutilized, techniques. Indeed, 1D and 2D NMR spectra of pure, atomically precise clusters can be very detailed and informative. Molecular clusters are molecules and, thus, have discrete energy levels and undergo stepwise oxidation or reduction. The effect of the charge state on the chemical shifts and line shapes is a function of the ligand type (ligands differ due to specific bonds with different Au atom types) and the position of the chemical group along the ligand backbone: for groups near the Au core, they can be very dramatic. Ligand-protected gold clusters are hard-soft molecules where a hard metal core is surrounded by a dynamic molecular layer. The latter provides a nanoenvironment that interfaces the cluster core with the surrounding environment and can be permeated by molecules and ions. NMR spectroscopy is especially useful to assess its structure. For example, the data show that whereas long alkanethiolates form bundles, shorter chains exhibit more conformational freedom and are quite folded. NMR spectroscopy allows studying diastereotopic effects and provides information on possible hydrogen bonds of ligands with sulfur or surface gold atoms. EPR spectroscopy is a very precise technique to check and characterize the magnetic state of gold clusters or clusters doped with foreign-metal atoms. Electron nuclear double resonance (ENDOR) provides a powerful tool to assess the interaction of an unpaired electron with nuclei, as we showed for 197Au and 1H. It can be used as a sensitive probe of the spin-density distribution in nanoclusters: for example, it showed that the singly occupied molecular orbital may span outside the Au core by nearly 6 Å. Solid-state EPR spectroscopy has provided compelling evidence that the specific ligands and the crystallinity degree are very important factors in determining the interactions between clusters in the solid state. Depending on the condition, paramagnetic, superparamagnetic, ferromagnetic, or antiferromagnetic behavior can be observed. Time-resolved EPR was successfully tested to determine the efficiency of singlet-oxygen generation via sensitization of Au25 clusters. This Account thus demonstrates some of the remarkable insights that can be gained into the properties of atomically precise clusters through detailed NMR and EPR studies.

2.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316698

RESUMO

Three new 6-methyl-2-oxo-1,2-dihydroquinoline-3-carbaldehyde-thiosemicarbazones-N-4-substituted pro-ligands and their Cu(II) complexes (1, -NH2; 2, -NHMe; 3, -NHEt) have been prepared and characterized. In both the X-ray structures of 1 and 3, two crystallographically independent complex molecules were found that differ either in the nature of weakly metal-binding species (water in 1a and nitrate in 1b) or in the co-ligand (water in 3a and methanol in 3b). Electron Paramagnetic Resonance (EPR) measurements carried out on complexes 1 and 3 confirmed the presence of such different species in the solution. The electrochemical behavior of the pro-ligands and of the complexes was investigated, as well as their biological activity. Complexes 2 and 3 exhibited a high cytotoxicity against human tumor cells and 3D spheroids derived from solid tumors, related to the high cellular uptake. Complexes 2 and 3 also showed a high selectivity towards cancerous cell lines with respect to non-cancerous cell lines and were able to circumvent cisplatin resistance. Via the Transmission Electron Microscopy (TEM) imaging technique, preliminary insights into the biological activity of copper complexes were obtained.


Assuntos
Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cobre/química , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Eletroquímica , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/química
3.
J Am Chem Soc ; 141(40): 16033-16045, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31532209

RESUMO

The study of the structures and properties of atomically precise gold nanoclusters is the object of active research worldwide. Recently, research has been also focusing on the doping of metal nanoclusters through introduction of noble metals, such as platinum, and less noble metals, such as cadmium and mercury. Previous studies, which relied extensively on the use of mass spectrometry and single-crystal X-ray crystallography, led to the assignment of the location of each of these foreign-metal atoms. Our study provides new insights into this topic and, particularly, compelling evidence about the actual position of the selected metal atoms M = Pt, Pd, Hg, and Cd in the structure of Au24M(SR)180. To make sure that the results were not dependent on the thiolate, for SR we used both butanethiolate and phenylethanethiolate. The clusters were prepared according to different literature procedures that were supposed to lead to different doping positions. Use of NMR spectroscopy and isotope effects, with the support of mass spectrometry, electrochemistry, and single-crystal X-ray crystallography, led us to confirm that noble metals indeed dope the cluster at its central position, whereas no matter how the doping reaction is conducted and the nature of the ligand, the position of both Cd and Hg is always on the icosahedron shell, rather than at the central or staple position, as often reported. Our results not only provide a reassessment of previous conclusions, but also highlight the importance of NMR spectroscopy studies and cast doubts on drawing conclusions mostly based on single-crystal X-ray crystallography.

4.
J Am Chem Soc ; 138(23): 7216-9, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27244091

RESUMO

Polymerization of acidic monomers is one of the biggest challenges for atom transfer radical polymerization (ATRP). An intramolecular cyclization reaction leading to the loss of the C-X chain-end functionality was found to be the main reason for the partial termination of the growing polymer chains. Three approaches were used to overcome this problem: using Cl as the chain-end halogen, lowering the pH (to 0.9), and increasing polymerization rate. Methacrylic acid (MAA) was polymerized by both electrochemically mediated ATRP and supplemental activator and reducing agent ATRP up to high conversion (>90%), in t ≤ 4 h at 25 °C, using inexpensive and nontoxic reagents (NaCl, diluted HCl, water). Control over molecular weight (MW) dispersity was satisfactory, and MWs were in agreement with theoretical values. The "livingness" of the process was confirmed by an electrochemical switch, used to repeatedly and periodically deactivate/reactivate growing chains.

5.
Anal Chem ; 83(16): 6355-62, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21718063

RESUMO

Monodisperse Au(25)L(18)(0) (L = S(CH(2))(2)Ph) and [n-Oct(4)N(+)][Au(25)L(18)(-)] clusters were synthesized in tetrahydrofuran. An original strategy was then devised to oxidize them: in the presence of bis(pentafluorobenzoyl) peroxide, the neutral or the negatively charged clusters react as efficient electron donors in a dissociative electron-transfer (ET) process, in the former case yielding [Au(25)L(18)(+)][C(6)F(5)CO(2)(-)]. As opposed to other reported redox methods, this dissociative ET approach is irreversible, easily controllable, and clean, particularly for NMR purposes, as no hydrogen atoms are introduced. By using this approach, the -1, 0, and +1 charge states of Au(25)L(18) could be fully characterized by (1)H and (13)C NMR spectroscopy, using one- and two-dimensional techniques, in various solvents, and as a function of temperature. For all charge states, the NMR results and analysis nicely match recent structural findings about the presence of two different ligand populations in the capping monolayer, each resonance of the two ligand families displaying distinct NMR patterns. The radical nature of Au(25)L(18)(0) is particularly evident in the (1)H and (13)C NMR patterns of the inner ligands. The NMR behavior of radical Au(25)L(18)(0) was also simulated by DFT calculations, and the interplay between theory and experiments revealed a fundamental paramagnetic contribution coming from Fermi contact shifts. Interestingly, the NMR patterns of Au(25)L(18)(-) and Au(25)L(18)(+) were found to be quite similar, pointing to the latter cluster form as a diamagnetic species.


Assuntos
Ouro/química , Espectroscopia de Ressonância Magnética/métodos , Compostos Organometálicos/química , Enxofre/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Ligantes , Magnetismo , Modelos Moleculares , Conformação Molecular , Oxirredução , Eletricidade Estática , Temperatura
6.
J Biol Inorg Chem ; 16(5): 695-713, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21594772

RESUMO

Four platinum(II) complexes of general formula [PtCl(η(1)-C(9)H(7))L(2)] [where L(2) is 1,2-bis(diphenylphosphino)ethane (dppe) 1 or cycloocta-1,5-diene (cod) 3] and [PtCl(2)L(2)] (where L(2) is dppe 2 or cod 4) were studied. Inhibition growth assays on human tumor cell lines evidenced for 1 and 3 an antiproliferative effect and, interestingly, the cytotoxic effect exerted by 1 is similar to that of cisplatin. Electrochemical and NMR measurements allowed us to determine the structural and redox properties. Investigation of the mechanism of action responsible for the cytotoxicity demonstrated a weak capacity of interacting with DNA. Some experiments performed on rat liver mitochondria indicate that 1 acts as an inducer of the mitochondrial permeability transition, thus leading to the release of proapoptotic factors, such as cytochrome c and apoptosis-inducing factor.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cloretos/química , Cloretos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Técnicas Eletroquímicas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Oxirredução , Ratos , Proteína Supressora de Tumor p53/genética
7.
Inorg Chem ; 50(2): 489-502, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21141945

RESUMO

Three different zirconium thio and oxothio clusters, characterized by different coordination modes of dithioacetate and/or monothioacetate ligands, were obtained by the reaction of monothioacetic acid with zirconium n-butoxide, Zr(O(n)Bu)4, in different experimental conditions. In particular, we isolated the three polynuclear Zr3(µ3-SSSCCH3)2(SSCCH3)6·2(n)BuOH (Zr3), Zr4(µ3-O)2(µ-η(1)-SOCCH3)2(SOCCH3)8(O(n)Bu)2 (Zr4), and Zr6(µ3-O)5(µ-SOCCH3)2(µ-OOCCH3)(SOCCH3)11((n)BuOH) (Zr6) derivatives, presenting some peculiar characteristics. Zr6 has an unusual star-shaped structure. Only sulfur-based ligands, viz., chelating dithioacetate monoanions and an unusual ethane-1,1,1-trithiolate group µ3 coordinating the Zr ions, were observed in the case of Zr3. 1D and 2D NMR analyses confirmed the presence of differently coordinated ligands. Raman spectroscopy was further used to characterize the new polynuclear complexes. Time-resolved extended X-ray absorption fine structure measurements, devoted to unraveling the cluster formation mechanisms, evidenced a fast coordination of sulfur ligands and subsequent relatively rapid rearrangements.


Assuntos
Oxigênio/química , Enxofre/química , Zircônio/química , Ácidos Carboxílicos/química , Cristalografia por Raios X , Indicadores e Reagentes , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Compostos de Sulfidrila/química
8.
Nanoscale ; 13(36): 15394-15402, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34499056

RESUMO

We report the identification and quantitative isolation of Au145(SR)60X (R = n-butyl, n-pentyl; X = halide) along with elucidation of key properties as compared to the corresponding ubiquitous chiral-icosahedral Au144(SR)60 cluster known to have a central vacancy. The stoichiometries were assessed by electrospray mass spectrometry (ESI-MS) at isotopic resolution, and induced dissociation patterns indicate the 'extra' (Au,Br) atoms are strongly bound components of these structures. Voltammetric and spectroscopic characterization reveals Au145(SR)60X behaviors that are qualitatively similar to yet fascinatingly distinct from those of Au144(SR)60. (1H,13C)-NMR spectra clearly show how both Au145(SR)60X and Au144(SR)60 are capped by 12 distinct ligand types of 5-fold equivalence, as was recently established for Au144(SR)60 capped by shorter ligands, demonstrating that this novel cluster shares the same chiral-icosahedral motif. Intriguingly, Au145(SR)60X is strongly near-IR luminescent, whereas under comparable conditions Au144(SR)60 barely emits. The photoluminescence pattern of Au145(SR)60X is very similar to that observed for Au25(SR)18, which contains the Au13 core. The combined results are interpreted as consistent with neutral Au145(SR)60X as a diamagnetic species, electronically and structurally similar to the corresponding Au144(SR)60 compounds.

9.
Inorg Chem ; 49(5): 2103-10, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20136070

RESUMO

Deprotonation of 1-methylcytosine (1-MeCy) and 9-methyladenine (9-MeAd) promoted by cis-[L(2)Pt(mu-OH)](2)(NO(3))(2) (L = PPh(3), PMePh(2), (1)/(2)dppe) in PhCN causes the irreversible insertion of a nitrile molecule into the Pt-N4 and Pt-N6 bonds of the cytosinate and adeninate ligands, respectively, to form the stable azametallacycle complexes cis-[L(2)PtNH=C(Ph){1-MeCy(-2H)}]NO(3) (L = PPh(3), 1; PMePh(2), 2; (1)/(2)dppe, 3) and cis-[L(2)PtNH=C(Ph){9-MeAd(-2H)}]NO(3) (L = PPh(3), 4; PMePh(2), 5) containing the deprotonated form of the molecules (Z)-9-N-(1-methyl-2-oxo-2,3-dihydropyrimidin-4(1H)-ylidene)benzimidamide and (Z)-N-(9-methyl-1H-purin-6(9H)-ylidene)benzimidamide. Single-crystal X-ray analyses of 2 and 4 show the metal coordinated to the N3 cytosine site [Pt-N3 = 2.112(7) A] and to the N1 site of adenine [Pt-N1 = 2.116(6) A] and to the nitrogen atom of the inserted benzonitrile [Pt-N2 = 2.043(6) and 2.010(6) A in 2 and 4, respectively], with the exocyclic nucleobase amino nitrogen bound to the carbon atom of the CN group. Complex 2, in solution, undergoes a dynamic process related to a partially restricted rotation around Pt-P bonds, arising from a steric interaction of the oxygen atom of the cytosine with one ring of the phosphine ligands. The reaction of 4 with acetylacetone (Hacac) causes the quantitative protonation of the anionic ligand, affording the acetylacetonate complex cis-[(PPh(3))(2)Pt(acac)]NO(3) and the free benzimidamide NH=C(Ph){9-MeAd(-H)}. In the same experimental conditions, complex 3 reacts with Hacac only partially.


Assuntos
Compostos Aza/química , Compostos Aza/síntese química , Nitrilas/química , Nitrogênio/química , Platina/química , Adenina/análogos & derivados , Adenina/química , Cristalografia por Raios X , Citosina/análogos & derivados , Citosina/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular
10.
ACS Nano ; 12(7): 7057-7066, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29957935

RESUMO

The study of the molecular cluster Au25(SR)18 has provided a wealth of fundamental insights into the properties of clusters protected by thiolated ligands (SR). This is also because this cluster has been particularly stable under a number of experimental conditions. Very unexpectedly, we found that paramagnetic Au25(SR)180 undergoes a spontaneous bimolecular fusion to form another benchmark gold nanocluster, Au38(SR)24. We tested this reaction with a series of Au25 clusters. The fusion was confirmed and characterized by UV-vis absorption spectroscopy, ESI mass spectrometry, 1H and 13C NMR spectroscopy, and electrochemistry. NMR evidences the presence of four types of ligand and, for the same proton type, double signals caused by the diastereotopicity arising from the chirality of the capping shell. This effect propagates up to the third carbon atom along the ligand chain. Electrochemistry provides a particularly convenient way to study the evolution process and determine the fusion rate constant, which decreases as the ligand length increases. No reaction is observed for the anionic clusters, whereas the radical nature of Au25(SR)180 appears to play an important role. This transformation of a stable cluster into a larger stable cluster without addition of any co-reagent also features the bottom-up assembly of the Au13 building block in solution. This very unexpected result could modify our view of the relative stability of molecular gold nanoclusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA