Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38662789

RESUMO

Ancient genomic analyses are often restricted to utilizing pseudohaploid data due to low genome coverage. Leveraging low-coverage data by imputation to calculate phased diploid genotypes that enables haplotype-based interrogation and single nucleotide polymorphism (SNP) calling at unsequenced positions is highly desirable. This has not been investigated for ancient cattle genomes despite these being compelling subjects for archeological, evolutionary, and economic reasons. Here, we test this approach by sequencing a Mesolithic European aurochs (18.49×; 9,852 to 9,376 calBCE) and an Early Medieval European cow (18.69×; 427 to 580 calCE) and combine these with published individuals: two ancient and three modern. We downsample these genomes (0.25×, 0.5×, 1.0×, and 2.0×) and impute diploid genotypes, utilizing a reference panel of 171 published modern cattle genomes that we curated for 21.7 million (Mn) phased SNPs. We recover high densities of correct calls with an accuracy of >99.1% at variant sites for the lowest downsample depth of 0.25×, increasing to >99.5% for 2.0× (transversions only, minor allele frequency [MAF] ≥ 2.5%). The recovery of SNPs correlates with coverage; on average, 58% of sites are recovered for 0.25× increasing to 87% for 2.0×, utilizing an average of 3.5 million (Mn) transversions (MAF ≥2.5%), even in the aurochs, despite the highest temporal distance from the modern reference panel. Our imputed genomes behave similarly to directly called data in allele frequency-based analyses, for example consistently identifying runs of homozygosity >2 Mb, including a long homozygous region in the Mesolithic European aurochs.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , DNA Antigo/análise , Haplótipos , Genótipo , Genômica/métodos
2.
Eur J Hum Genet ; 29(3): 512-523, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33139852

RESUMO

The influence of Viking-Age migrants to the British Isles is obvious in archaeological and place-names evidence, but their demographic impact has been unclear. Autosomal genetic analyses support Norse Viking contributions to parts of Britain, but show no signal corresponding to the Danelaw, the region under Scandinavian administrative control from the ninth to eleventh centuries. Y-chromosome haplogroup R1a1 has been considered as a possible marker for Viking migrations because of its high frequency in peninsular Scandinavia (Norway and Sweden). Here we select ten Y-SNPs to discriminate informatively among hg R1a1 sub-haplogroups in Europe, analyse these in 619 hg R1a1 Y chromosomes including 163 from the British Isles, and also type 23 short-tandem repeats (Y-STRs) to assess internal diversity. We find three specifically Western-European sub-haplogroups, two of which predominate in Norway and Sweden, and are also found in Britain; star-like features in the STR networks of these lineages indicate histories of expansion. We ask whether geographical distributions of hg R1a1 overall, and of the two sub-lineages in particular, correlate with regions of Scandinavian influence within Britain. Neither shows any frequency difference between regions that have higher (≥10%) or lower autosomal contributions from Norway and Sweden, but both are significantly overrepresented in the region corresponding to the Danelaw. These differences between autosomal and Y-chromosomal histories suggest either male-specific contribution, or the influence of patrilocality. Comparison of modern DNA with recently available ancient DNA data supports the interpretation that two sub-lineages of hg R1a1 spread with the Vikings from peninsular Scandinavia.


Assuntos
Cromossomos Humanos Y/genética , Haplótipos , Migração Humana , Evolução Molecular , Humanos , Masculino , Repetições Minissatélites , Linhagem , Polimorfismo de Nucleotídeo Único , Países Escandinavos e Nórdicos , Reino Unido
3.
Science ; 365(6449): 173-176, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31296769

RESUMO

Genome-wide analysis of 67 ancient Near Eastern cattle, Bos taurus, remains reveals regional variation that has since been obscured by admixture in modern populations. Comparisons of genomes of early domestic cattle to their aurochs progenitors identify diverse origins with separate introgressions of wild stock. A later region-wide Bronze Age shift indicates rapid and widespread introgression of zebu, Bos indicus, from the Indus Valley. This process was likely stimulated at the onset of the current geological age, ~4.2 thousand years ago, by a widespread multicentury drought. In contrast to genome-wide admixture, mitochondrial DNA stasis supports that this introgression was male-driven, suggesting that selection of arid-adapted zebu bulls enhanced herd survival. This human-mediated migration of zebu-derived genetics has continued through millennia, altering tropical herding on each continent.


Assuntos
Bovinos/genética , Domesticação , Animais , DNA Mitocondrial/genética , Evolução Molecular , Fertilidade , Genoma , Genômica , Migração Humana
4.
Science ; 361(6397): 85-88, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29976826

RESUMO

Current genetic data are equivocal as to whether goat domestication occurred multiple times or was a singular process. We generated genomic data from 83 ancient goats (51 with genome-wide coverage) from Paleolithic to Medieval contexts throughout the Near East. Our findings demonstrate that multiple divergent ancient wild goat sources were domesticated in a dispersed process that resulted in genetically and geographically distinct Neolithic goat populations, echoing contemporaneous human divergence across the region. These early goat populations contributed differently to modern goats in Asia, Africa, and Europe. We also detect early selection for pigmentation, stature, reproduction, milking, and response to dietary change, providing 8000-year-old evidence for human agency in molding genome variation within a partner species.


Assuntos
Domesticação , Cabras/genética , Mosaicismo , África , Animais , Animais Domésticos/classificação , Animais Domésticos/genética , Ásia , DNA Antigo , DNA Mitocondrial/genética , Europa (Continente) , Folistatina/genética , Variação Genética , Genoma , Cabras/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA