Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339670

RESUMO

The continuous monitoring of soil water content is commonly carried out using low-frequency capacitance sensors that require a site-specific calibration to relate sensor readings to apparent dielectric bulk permittivity (Kb) and soil water content (θ). In fine-textured soils, the conversion of Kb to θ is still challenging due to temperature effects on the bound water fraction associated with clay mineral surfaces, which is disregarded in factory calibrations. Here, a multi-point calibration approach accounts for temperature effects on two soils with medium to high clay content. A calibration strategy was developed using repacked soil samples in which the Kb-θ relationship was determined for temperature (T) steps from 10 to 40 °C. This approach was tested using the GS3 and TEROS-12 sensors (METER Group, Inc. Pullman, WA, USA; formerly Decagon Devices). Kb is influenced by T in both soils with contrasting T-Kb relationships. The measured data were fitted using a linear function θ = aKb + b with temperature-dependent coefficients a and b. The slope, a(T), and intercept, b(T), of the loam soil were different from the ones of the clay soil. The consideration of a temperature correction resulted in low RMSE values, ranging from 0.007 to 0.033 cm3 cm-3, which were lower than the RMSE values obtained from factory calibration (0.046 to 0.11 cm3 cm-3). However, each experiment was replicated only twice using two different sensors. Sensor-to-sensor variability effects were thus ignored in this study and will be systematically investigated in a future study. Finally, the applicability of the proposed calibration method was tested at two experimental sites. The spatial-average θ from a network of GS3 sensors based on the new calibration fairly agreed with the independent area-wide θ from the Cosmic Ray Neutron Sensor (CRNS). This study provided a temperature-corrected calibration to increase the accuracy of commercial sensors, especially under dry conditions, at two experimental sites.

2.
Environ Sci Technol ; 56(8): 4998-5008, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35353529

RESUMO

Spectral induced polarization (SIP) has the potential for monitoring reactive processes in the subsurface. While strong SIP responses have been measured in response to calcite precipitation, their origin and mechanism remain debated. Here we present a novel geo-electrical millifluidic setup designed to observe microscale reactive transport processes while performing SIP measurements. We induced calcite precipitation by injecting two reactive solutions into a porous medium, which led to highly localized precipitates at the mixing interface. Strikingly, the amplitude of the SIP response increased by 340% during the last 7% increase in precipitate volume. Furthermore, while the peak frequency in SIP response varied spatially over 1 order of magnitude, the crystal size range was similar along the front, contradicting assumptions in the classical grain polarization model. We argue that the SIP response of calcite precipitation in such mixing fronts is governed by Maxwell-Wagner polarization due to the establishment of a precipitate wall. Numerical simulations of the electric field suggested that spatial variation in peak frequency was related to the macroscopic shape of the front. These findings provide new insights into the SIP response of calcite precipitation and highlight the potential of geoelectrical millifluidics for understanding and modeling electrical signatures of reactive transport processes.


Assuntos
Carbonato de Cálcio , Eletricidade , Carbonato de Cálcio/química , Precipitação Química , Porosidade
3.
New Phytol ; 226(1): 98-110, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31792975

RESUMO

Root water uptake is a key ecohydrological process for which a physically based understanding has been developed in the past decades. However, due to methodological constraints, knowledge gaps remain about the plastic response of whole plant root systems to a rapidly changing environment. We designed a laboratory system for nondestructive monitoring of stable isotopic composition in plant transpiration of a herbaceous species (Centaurea jacea) and of soil water across depths, taking advantage of newly developed in situ methods. Daily root water uptake profiles were obtained using a statistical Bayesian multisource mixing model. Fast shifts in the isotopic composition of both soil and transpiration water could be observed with the setup and translated into dynamic and pronounced shifts of the root water uptake profile, even in well watered conditions. The incorporation of plant physiological and soil physical information into statistical modelling improved the model output. A simple exercise of water balance closure underlined the nonunique relationship between root water uptake profile on the one hand, and water content and root distribution profiles on the other, illustrating the continuous adaption of the plant water uptake as a function of its root hydraulic architecture and soil water availability during the experiment.


Assuntos
Centaurea , Raízes de Plantas , Solo , Teorema de Bayes , Raízes de Plantas/fisiologia , Transpiração Vegetal , Água
4.
Glob Chang Biol ; 26(10): 5382-5403, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32692435

RESUMO

Soil degradation is a worsening global phenomenon driven by socio-economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil-crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil-plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil-crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.


Assuntos
Oligoquetos , Solo , Agricultura , Animais , Plantas
5.
Anal Bioanal Chem ; 411(6): 1253-1260, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30617405

RESUMO

Phosphorus (P) research still lacks techniques for rapid imaging of P use and allocation in different soil, sediment, and biological systems in a quantitative manner. In this study, we describe a time-saving and cost-efficient digital autoradiographic method for in situ quantitative imaging of 33P radioisotopes in plant materials. Our method combines autoradiography of the radiotracer applications with additions of commercially available 14C polymer references to obtain 33P activities in a quantitative manner up to 2000 Bq cm-2. Our data show that linear standard regressions for both radioisotopes are obtained, allowing the establishment of photostimulated luminescence equivalence between both radioisotopes with a factor of 9.73. Validating experiments revealed a good agreement between the calculated and applied 33P activity (R2 = 0.96). This finding was also valid for the co-exposure of 14C polymer references and 33P radioisotope specific activities in excised plant leaves for both maize (R2 = 0.99) and wheat (R2 = 0.99). The outlined autoradiographic quantification procedure retrieved 100% ± 12% of the 33P activity in the plant leaves, irrespective of plant tissue density. The simplicity of this methodology opens up new perspectives for fast quantitative imaging of 33P in biological systems and likely, thus, also for other environmental compartments.


Assuntos
Ácidos Fosfóricos/análise , Radioisótopos de Fósforo/análise , Folhas de Planta/química , Triticum/química , Zea mays/química , Autorradiografia/métodos , Radioisótopos de Carbono/análise , Fósforo/análise , Polímeros/análise
6.
Sensors (Basel) ; 19(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683890

RESUMO

Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa), and σa represents an average value for the depth range investigated with a specific coil separation and orientation. Multi-coil EMI data can be inverted to obtain layered bulk electrical conductivity models. However, above-ground stationary influences alter the signal and the inversion results can be unreliable. This study proposes an improved data processing chain, including EMI data calibration, conversion, and inversion. For the calibration of σa, three direct current resistivity techniques are compared: Electrical resistivity tomography with Dipole-Dipole and Schlumberger electrode arrays and vertical electrical soundings. All three methods obtained robust calibration results. The Dipole-Dipole-based calibration proved stable upon testing on different soil types. To further improve accuracy, we propose a non-linear exact EMI conversion to convert the magnetic field to σa. The complete processing workflow provides accurate and quantitative EMI data and the inversions reliable estimates of the intrinsic electrical conductivities. This improves the ability to combine EMI with, e.g., remote sensing, and the use of EMI for monitoring purposes.

7.
Ann Bot ; 121(5): 1033-1053, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29432520

RESUMO

Background and Aims: Root architecture development determines the sites in soil where roots provide input of carbon and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architecture models have been widely used and been further developed into functional-structural models that simulate the fate of water and solutes in the soil-root system. The root architecture model CRootBox presented here is a flexible framework to model root architecture and its interactions with static and dynamic soil environments. Methods: CRootBox is a C++-based root architecture model with Python binding, so that CRootBox can be included via a shared library into any Python code. Output formats include VTP, DGF, RSML and a plain text file containing coordinates of root nodes. Furthermore, a database of published root architecture parameters was created. The capabilities of CRootBox for the unconfined growth of single root systems, as well as the different parameter sets, are highlighted in a freely available web application. Key results: The capabilities of CRootBox are demonstrated through five different cases: (1) free growth of individual root systems; (2) growth of root systems in containers as a way to mimic experimental setups; (3) field-scale simulation; (4) root growth as affected by heterogeneous, static soil conditions; and (5) coupling CRootBox with code from the book Soil physics with Python to dynamically compute water flow in soil, root water uptake and water flow inside roots. Conclusions: CRootBox is a fast and flexible functional-structural root model that is based on state-of-the-art computational science methods. Its aim is to facilitate modelling of root responses to environmental conditions as well as the impact of roots on soil. In the future, this approach will be extended to the above-ground part of the plant.


Assuntos
Modelos Biológicos , Raízes de Plantas/anatomia & histologia , Software , Água/metabolismo , Transporte Biológico , Simulação por Computador , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Solo/química
8.
Glob Chang Biol ; 23(3): 1338-1352, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27416519

RESUMO

Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH4+ (12%) and soil total N (210%), although it decreased soil NO3- (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N2 O fluxes as well as hydrological NH4+ and NO2- fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized.


Assuntos
Mudança Climática , Ciclo do Nitrogênio , Solo , Ecossistema , Nitrificação , Nitrogênio , Áreas Alagadas
9.
Glob Chang Biol ; 23(10): 4068-4083, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28142211

RESUMO

Animal manure application as organic fertilizer does not only sustain agricultural productivity and increase soil organic carbon (SOC) stocks, but also affects soil nitrogen cycling and nitrous oxide (N2 O) emissions. However, given that the sign and magnitude of manure effects on soil N2 O emissions is uncertain, the net climatic impact of manure application in arable land is unknown. Here, we performed a global meta-analysis using field experimental data published in peer-reviewed journals prior to December 2015. In this meta-analysis, we quantified the responses of N2 O emissions to manure application relative to synthetic N fertilizer application from individual studies and analyzed manure characteristics, experimental duration, climate, and soil properties as explanatory factors. Manure application significantly increased N2 O emissions by an average 32.7% (95% confidence interval: 5.1-58.2%) compared to application of synthetic N fertilizer alone. The significant stimulation of N2 O emissions occurred following cattle and poultry manure applications, subsurface manure application, and raw manure application. Furthermore, the significant stimulatory effects on N2 O emissions were also observed for warm temperate climate, acid soils (pH < 6.5), and soil texture classes of sandy loam and clay loam. Average direct N2 O emission factors (EFs) of 1.87% and 0.24% were estimated for upland soils and rice paddy soils receiving manure application, respectively. Although manure application increased SOC stocks, our study suggested that the benefit of increasing SOC stocks as GHG sinks could be largely offset by stimulation of soil N2 O emissions and aggravated by CH4 emissions if, particularly for rice paddy soils, the stimulation of CH4 emissions by manure application was taken into account.


Assuntos
Agricultura , Ciclo do Carbono , Óxido Nitroso , Solo , Animais , Carbono , Bovinos , Fertilizantes , Esterco
10.
Rapid Commun Mass Spectrom ; 31(16): 1333-1343, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28557104

RESUMO

RATIONALE: Chemodenitrification is an important N2 O source in soil; however, knowledge about the production of CO2 and N2 O from abiotic nitrite-SOM reactions, especially the N2 O isotopic signatures (intramolecular 15 N site preference (SP), and δ15 Nbulk and δ18 O values), is quite limited at present. METHODS: N2 O and CO2 emissions from chemical reactions of nitrite with lignin products were determined with gas chromatography, and their response surfaces as a function of pH from 3 to 6 and nitrite concentration from 0.1 to 0.5 mM were explored with polynomial regression. The intramolecular 15 N distribution of N2 O, as well as δ15 Nbulk and δ18 O values, were measured with an isotope ratio mass spectrometer coupled to an online pre-concentration unit. The variability in N2 O SP values was tested from pH 3 to 5, and for nitrite concentrations from 0.3 to 0.5 mM. RESULTS: Both CO2 and N2 O emissions varied largely with pH and the structure of lignin products. The highest N2 O emission occurred at pH 4-5 in 4-hydroxy-3,5-dimethoxybenzaldehyde and 4-hydroxy-3,5-dimethoxybenzoic acid treatments, and at pH 3 in the treatments with lignin, 4-hydroxy-3-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzoic acid, 4-hydroxybenzaldehyde, and 4-hydroxybenzoic acid. A wide range of N2 O SP values (11.9-37.4‰), which was pH dependent and not distinguishable from microbial pathways, was observed at pH 3-5. The δ15 Nbulk and δ18 O values of N2 O were both in a similar range to that reported for fungal denitrification and bacterial denitrification. CONCLUSIONS: These results present the first characterization of the isotopic composition of N2 O from chemodenitrification in pure chemical assays. Chemical reactions of nitrite with lignin are pH-dependent and associated with substantial CO2 and N2 O emissions. The SP values of N2 O derived from chemodenitrification were neither distinguishable from the biotic pathways nor remained stable with varying pH. Therefore, the use of N2 O isotopic signatures for source partitioning is restricted when chemodenitrification is contributing significantly to N2 O emission.

12.
Sensors (Basel) ; 17(1)2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28117731

RESUMO

Soil water content is a key variable for understanding and modelling ecohydrological processes. Low-cost electromagnetic sensors are increasingly being used to characterize the spatio-temporal dynamics of soil water content, despite the reduced accuracy of such sensors as compared to reference electromagnetic soil water content sensing methods such as time domain reflectometry. Here, we present an effective calibration method to improve the measurement accuracy of low-cost soil water content sensors taking the recently developed SMT100 sensor (Truebner GmbH, Neustadt, Germany) as an example. We calibrated the sensor output of more than 700 SMT100 sensors to permittivity using a standard procedure based on five reference media with a known apparent dielectric permittivity (1 < Ka < 34.8). Our results showed that a sensor-specific calibration improved the accuracy of the calibration compared to single "universal" calibration. The associated additional effort in calibrating each sensor individually is relaxed by a dedicated calibration setup that enables the calibration of large numbers of sensors in limited time while minimizing errors in the calibration process.

13.
Environ Sci Technol ; 50(23): 12713-12721, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27788326

RESUMO

Transport and retention behavior of multi-walled carbon nanotubes (MWCNTs) was studied in mixtures of negatively charged quartz sand (QS) and positively charged goethite-coated sand (GQS) to assess the role of chemical heterogeneity. The linear equilibrium sorption model provided a good description of batch results, and the distribution coefficients (KD) drastically increased with the GQS fraction that was electrostatically favorable for retention. Similarly, retention of MWCNTs increased with the GQS fraction in packed column experiments. However, calculated values of KD on GQS were around 2 orders of magnitude smaller in batch than packed column experiments due to differences in lever arms associated with hydrodynamic and adhesive torques at microscopic roughness locations. Furthermore, the fraction of the sand surface area that was favorable for retention (Sf) was much smaller than the GQS fraction because nanoscale roughness produced shallow interactions that were susceptible to removal. These observations indicate that only a minor fraction of the GQS was favorable for MWCNT retention. These same observations held for several different sand sizes. Column breakthrough curves were always well described using an advective-dispersive transport model that included retention and blocking. However, depth-dependent retention also needed to be included to accurately describe the retention profile when the GQS fraction was small. Results from this research indicate that roughness primarily controlled the retention of MWCNTs, although goethite surfaces played an important secondary role.


Assuntos
Nanotubos de Carbono/ultraestrutura , Quartzo , Porosidade , Dióxido de Silício
14.
Magn Reson Chem ; 54(12): 975-984, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27420565

RESUMO

Magnetic impurities are ubiquitous in natural porous media such as sand and soil. They generate internal magnetic field gradients because of increased magnetic susceptibility differences between solid and liquid phase in the pore space and because of the presence of magnetic centers. These internal gradients accelerate NMR relaxation rates and thus might limit the possibility of pore space characterization using NMR. In this study, we investigate the effects of coating the surface of natural sands by the antiferromagnetic iron oxyhydroxide goethite on NMR relaxation and diffusion properties. We found a non-quadratic dependence of the relaxation time distributions on the echo time indicating that the relaxation experiments were not performed in the fast diffusion limit, while the weak dependence on the external magnetic field strength is explained by the preponderance of the surface relaxation over the effect of diffusion in internal gradients. The surface to volume ratio of the pore space, determined by NMR diffusimetry ((S/V)NMR ) remains approximately constant, whereas the same quantity, determined from gas adsorption ((S/V)BET ) increases proportional to the coating density. This is because gas adsorption measures surface roughness on sub-nanometer scale, whereas NMR diffusimetry averages over structures smaller than few microns. This has consequences for the calculation of the surface relaxivities. The usage of the (S/V)NMR leads to constant values, whereas the usage of (S/V)BET leads to apparently decreasing relaxivities with increasing coating, which is unrealistic. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Quartzo/química , Dióxido de Silício/química , Algoritmos , Difusão , Campos Eletromagnéticos , Gases , Sedimentos Geológicos , Compostos de Ferro , Minerais , Porosidade
15.
Biodegradation ; 26(2): 139-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25715827

RESUMO

Recently we showed that during the degradation of sulfadiazine (SDZ) by Microbacterium lacus strain SDZm4 the principal metabolite 2-aminopyrimidine (2-AP) accumulated to the same molar amount in the culture as SDZ disappeared (Tappe et al. Appl Environ Microbiol 79:2572-2577, 2013). Although 2-AP is considered a recalcitrant agent, long-term lysimeter experiments with (14)C-pyrimidine labeled SDZ ([(14)C]pyrSDZ) provided indications for substantial degradation of the pyrimidine moiety of the SDZ molecule. Therefore, we aimed to enrich 2-AP degrading bacteria and isolated a pure culture of a Terrabacter-like bacterium, denoted strain 2APm3. When provided with (14)C-labeled SDZ, M. lacus strain SDZm4 degraded [(14)C]pyrSDZ to [(14)C]2-AP. Resting cells of 2APm3 at a concentration of 5 × 10(6) cells ml(-1) degraded 62 µM [(14)C]2-AP to below the detection limit (0.6 µM) within 5 days. Disappearance of 2-AP resulted in the production of at least two transformation products (M1 and M2) with M2 being identified as 2-amino-4-hydroxypyrimidine. After 36 days, the transformation products disappeared and 83 % of the applied [(14)C]2-AP radioactivity was trapped as (14)CO2. From this we conclude that a consortium of two species should be able to almost completely degrade SDZ in soils.


Assuntos
Genes Bacterianos , Micrococcaceae/metabolismo , Pirimidinas/metabolismo , RNA Ribossômico 16S/genética , Poluentes do Solo/metabolismo , Sulfadiazina/metabolismo , Biodegradação Ambiental , Dióxido de Carbono/metabolismo , Radioisótopos de Carbono , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Filogenia
16.
J Environ Qual ; 44(6): 1772-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26641329

RESUMO

Due to the limited solubility of phosphorus (P) in soil, understanding its binding in fine colloids is vital to better forecast P dynamics and losses in agricultural systems. We hypothesized that water-dispersible P is present as nanoparticles and that iron (Fe) plays a crucial role for P binding to these nanoparticles. To test this, we isolated water-dispersible fine colloids (WDFC) from an arable topsoil (Haplic Luvisol, Germany) and assessed colloidal P forms after asymmetric flow field-flow fractionation coupled with ultraviolet and an inductively coupled plasma mass spectrometer, with and without removal of amorphous and crystalline Fe oxides using oxalate and dithionite, respectively. We found that fine colloidal P was present in two dominant sizes: (i) in associations of organic matter and amorphous Fe (Al) oxides in nanoparticles <20 nm, and (ii) in aggregates of fine clay, organic matter and Fe oxides (more crystalline Fe oxides) with a mean diameter of 170 to 225 nm. Solution P-nuclear magnetic resonance spectra indicated that the organically bound P predominantly comprised orthophosphate-monoesters. Approximately 65% of P in the WDFC was liberated after the removal of Fe oxides (especially amorphous Fe oxides). The remaining P was bound to larger-sized WDFC particles and Fe bearing phyllosilicate minerals. Intriguingly, the removal of Fe by dithionite resulted in a disaggregation of the nanoparticles, evident in higher portions of organically bound P in the <20 nm nanoparticle fraction, and a widening of size distribution pattern in larger-sized WDFC fraction. We conclude that the crystalline Fe oxides contributed to soil P sequestration by (i) acting as cementing agents contributing to soil fine colloid aggregation, and (ii) binding not only inorganic but also organic P in larger soil WDFC particles.

17.
J Environ Qual ; 43(4): 1450-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25603092

RESUMO

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) groundwater monitoring in the Zwischenscholle aquifer in western Germany revealed concentrations exceeding the threshold value of 0.1 µg L and increasing concentration trends even 20 yr after its ban. Accordingly, the hypothesis was raised that a continued release of bound atrazine residues from the soil into the Zwischenscholle aquifer in combination with the low atrazine degradation in groundwater contributes to elevated atrazine in groundwater. Three soil cores reaching down to the groundwater table were taken from an agricultural field where atrazine had been applied before its ban in 1991. Atrazine residues were extracted from eight soil layers down to 300 cm using accelerated solvent extraction and analyzed using liquid chromatography-tandem mass spectrometry. Extracted atrazine concentrations ranged between 0.2 and 0.01 µg kg for topsoil and subsoil, respectively. The extracted mass from the soil profiles represented 0.07% of the applied mass, with 0.01% remaining in the top layer. A complete and instantaneous remobilization of atrazine residues and vertical mixing with the groundwater body below would lead to atrazine groundwater concentrations of 0.068 µg L. Considering the area where atrazine was applied in the region and assuming instantaneous lateral mixing in the Zwischenscholle aquifer would result in a mean groundwater concentration of 0.002 µg L. A conservative estimation suggests an atrazine half-life value of about 2 yr for the soil zone, which significantly exceeds highest atrazine half-lives found in the literature (433 d for subsurface soils). The long-term environmental behavior of atrazine and its metabolites thus needs to be reconsidered.

18.
Heliyon ; 10(1): e23882, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192753

RESUMO

Growing crops on marginal lands is a promising solution to alleviate the increasing pressure on agricultural land in Europe. Such crops will however be at the same time exposed to increased drought and pathogen prevalence, on already challenging soil conditions. Some sustainable practices, such as Silicon (Si) foliar fertilization, have been proposed to alleviate these two stress factors, but have not been tested under controlled, future climate conditions. We hypothesized that Si foliar fertilization would be beneficial for crops under future climate, and would have cascading beneficial effects on ecosystem processes, as many of them are directly dependent on plant health. We tested this hypothesis by exposing spring barley growing on marginal soil macrocosms (three with, three without Si treatment) to 2070 climate projections in an ecotron facility. Using the high-capacity monitoring of the ecotron, we estimated C, water, and N budgets of every macrocosm. Additionally, we measured crop yield, the biomass of each plant organ, and characterized bacterial communities using metabarcoding. Despite being exposed to water stress conditions, plants did not produce more biomass with the foliar Si fertilization, whatever the organ considered. Evapotranspiration (ET) was unaffected, as well as water quality and bacterial communities. However, in the 10-day period following two of the three Si applications, we measured a significant increase in C sequestration, when climate conditions where significantly drier, while ET remained the same. We interpreted these results as a less significant effect of Si treatment than expected as compared with literature, which could be explained by the high CO2 levels under future climate, that reduces need for stomata opening, and therefore sensitivity to drought. We conclude that making marginal soils climate proof using foliar Si treatments may not be a sufficient strategy, at least in this type of nutrient-poor, dry, sandy soil.

19.
Environ Sci Technol ; 47(21): 12229-37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24106877

RESUMO

Column experiments were conducted with undisturbed loamy sand soil under unsaturated conditions (around 90% saturation degree) to investigate the retention of surfactant stabilized silver nanoparticles (AgNPs) with various input concentration (Co), flow velocity, and ionic strength (IS), and the remobilization of AgNPs by changing the cation type and IS. The mobility of AgNPs in soil was enhanced with decreasing solution IS, increasing flow rate and input concentration. Significant retardation of AgNP breakthrough and hyperexponential retention profiles (RPs) were observed in almost all the transport experiments. The retention of AgNPs was successfully analyzed using a numerical model that accounted for time- and depth-dependent retention. The simulated retention rate coefficient (k1) and maximum retained concentration on the solid phase (Smax) increased with increasing IS and decreasing Co. The high k1 resulted in retarded breakthrough curves (BTCs) until Smax was filled and then high effluent concentrations were obtained. Hyperexponential RPs were likely caused by the hydrodynamics at the column inlet which produced a concentrated AgNP flux to the solid surface. Higher IS and lower Co produced more hyperexponential RPs because of larger values of Smax. Retention of AgNPs was much more pronounced in the presence of Ca(2+) than K(+) at the same IS, and the amount of AgNP released with a reduction in IS was larger for K(+) than Ca(2+) systems. These stronger AgNP interactions in the presence of Ca(2+) were attributed to cation bridging. Further release of AgNPs and clay from the soil was induced by cation exchange (K(+) for Ca(2+)) that reduced the bridging interaction and IS reduction that expanded the electrical double layer. Transmission electron microscopy, energy-dispersive X-ray spectroscopy, and correlations between released soil colloids and AgNPs indicated that some of the released AgNPs were associated with the released clay fraction.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Solo/química , Meio Ambiente , Troca Iônica , Nanopartículas Metálicas/ultraestrutura , Concentração Osmolar , Tamanho da Partícula
20.
J Environ Sci (China) ; 25(3): 466-72, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23923418

RESUMO

The aggregation of multi-walled carbon nanotubes (MWCNTs) in the aqueous phase not only inhibits their extensive utilization in various aspects but also dominates their environmental fate and transport. The role of surfactants at low concentration in the aggregation of MWCNTs has been studied, however the effect of perfluorinated surfactants at low concentration is uncertain. To understand this interfacial phenomenon, the influences of perfluorooctanoic acid (PFOA), and sodium dodecyl sulfate (SDS) as a control, on MWCNT aggregation in the aqueous phase were examined by the UV absorbency method. Influences of pH and cationic species on the critical coagulation concentration (CCC) value were evaluated. The CCC values were dependent on the concentration of PFOA, however a pronounced effect of SDS concentration on the CCC values was not observed. The CCC values of the MWCNTs were 51.6 mmol/L in NaCl and 0.28 mmol/L in CaCl2 solutions, which suggested pronounced differences in the effects of Na+ and Ca2+ ions on the aggregation of the MWCNTs. The presence of both PFOA and SDS significantly decreased the CCC values of the MWCNTs in NaCl solution. The aggregation of the MWCNTs took place under acidic conditions and was not notably altered under neutral and alkaline conditions due to the electrostatic repulsion of deprotonated functional groups on the surface of the MWCNTs.


Assuntos
Caprilatos/química , Fluorocarbonos/química , Nanotubos de Carbono/química , Cloreto de Cálcio/química , Eletroforese , Floculação , Concentração de Íons de Hidrogênio , Nanotubos de Carbono/ultraestrutura , Concentração Osmolar , Salinidade , Cloreto de Sódio/química , Dodecilsulfato de Sódio/química , Soluções , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA