Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 123(Pt 2): 202-12, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20048338

RESUMO

LIS1, NDE1 and NDEL1 modulate cytoplasmic dynein function in several cellular contexts. However, evidence that they regulate dynein-dependent organelle positioning is limited. Here, we show that depletion of NDE1 or NDEL1 alone profoundly affected the organisation of the Golgi complex but did not cause it to disperse, and slightly affected the position of endocytic compartments. However, striking dispersal of organelles was observed when both NDE1 and NDEL1 were depleted. A substantial portion of NDE1 and NDEL1 is membrane associated, and depletion of these proteins led to complete loss of dynein from membranes. Knockdown of LIS1 also caused the Golgi complex to fragment and disperse throughout the cell, and caused endocytic compartments to relocalise to the periphery. Depletion of LIS1, which is primarily cytosolic, led to partial loss of membrane-associated dynein, without affecting NDE1 and NDEL1. These data suggest that NDE1 and NDEL1 act upstream of LIS1 in dynein recruitment, and/or activation, on the membrane. Consistent with this hypothesis, expression of exogenous NDE1 or NDEL1 rescued the effects of LIS1 depletion on Golgi organisation, whereas LIS1 was only partially effective at rescuing the loss of NDE1 and NDEL1.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Proteínas de Transporte/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Organelas/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Mitose , Fenótipo , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
2.
J Cell Sci ; 123(Pt 3): 321-30, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20053638

RESUMO

Progression through mitosis and cytokinesis requires the sequential proteolysis of several cell-cycle regulators. This proteolysis is mediated by the ubiquitin-proteasome system, with the E3 ligase being the anaphase-promoting complex, also known as the cyclosome (APC/C). The APC/C is regulated by two activators, namely Cdc20 and Cdh1. The current view is that prior to anaphase, the APC/C is activated by Cdc20, but that following anaphase, APC/C switches to Cdh1-dependent activation. However, here we present an analysis of the kinetochore protein Cenp-F that is inconsistent with this notion. Although it has long been appreciated that Cenp-F is degraded sometime during or after mitosis, exactly when and how has not been clear. Here we show that degradation of Cenp-F initiates about six minutes after anaphase, and that this is dependent on a C-terminal KEN-box. Although these two observations are consistent with Cenp-F being a substrate of Cdh1-activated APC/C, Cenp-F is degraded normally in Cdh1-null cells. By contrast, RNAi-mediated repression of APC/C subunits or Cdc20 does inhibit Cenp-F degradation. These findings therefore suggest that the APC/C does not simply 'switch' upon anaphase onset; rather, our observations indicate that Cdc20 also contributes to post-anaphase activation of the APC/C. We also show that the post-anaphase, KEN-box-dependent degradation of Cenp-F requires it to be farnesylated, a post-translational modification usually linked to membrane association. Because so many of the behaviours of Cenp-F are farnesylation-dependent, we suggest that this modification plays a more global role in Cenp-F function.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas dos Microfilamentos/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Antígenos CD , Caderinas/genética , Caderinas/metabolismo , Proteínas Cdc20 , Proteínas Cdh1 , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Cinetocoros/metabolismo , Camundongos , Microscopia , Prenilação , Interferência de RNA , Complexos Ubiquitina-Proteína Ligase/metabolismo
3.
Curr Biol ; 17(13): 1173-9, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17600710

RESUMO

Cenp-F is a nuclear matrix component that localizes to kinetochores during mitosis and is then rapidly degraded after mitosis [1]. Unusually, both the localization and degradation of Cenp-F require it to be farnesylated [2]. Five studies recently demonstrated that Cenp-F is required for kinetochore-microtubule interactions and spindle checkpoint function [3-7]; however, the underlying molecular mechanisms have yet to be defined. Here, we show that Cenp-F interacts with Ndel1 and Nde1, two human NudE-related proteins implicated in regulating Lis1/Dynein motor complexes (reviewed in [8]). We show that Ndel1, Nde1, and Lis1 localize to kinetochores in a Cenp-F-dependent manner. In addition, Nde1, but not Ndel1, is required for kinetochore localization of Dynein. Accordingly, suppression of Nde1 inhibits metaphase chromosome alignment and activates the spindle checkpoint. By contrast, inhibition of Ndel1 results in malorientations that are not detected by the spindle checkpoint; Ndel1-deficient cells consequently enter anaphase in a timely manner but lagging chromosomes then manifest. A major function of Cenp-F, therefore, is to link the Ndel1/Nde1/Lis1/Dynein pathway to kinetochores. Furthermore, our data demonstrate that Ndel1 and Nde1 play distinct roles to ensure chromosome alignment and segregation.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dineínas/metabolismo , Cinetocoros/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Segregação de Cromossomos/fisiologia , Células HeLa , Humanos , Microtúbulos/metabolismo
4.
J Mol Biol ; 371(5): 1315-24, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17618651

RESUMO

The Saccharomyces cerevisiae TIM10 complex (TIM10c) is an ATP-independent chaperone of the mitochondrial intermembrane space, involved in transport of polytopic membrane proteins. The complex is an alpha(3)beta(3) hexamer of Tim9 and Tim10 subunits. We have generated specific mutations in charged residues in the central core domain of each subunit delineated by the characteristic twin CX(3)C motif, and investigated the effect of these mutations on subunit folding, complex assembly and TIM10 function in vitro and in vivo. Any combination of mutations that included a specific glutamate residue, conserved in all known Tim9 and Tim10 sequences, abolished assembly of the TIM10 complex. In vivo complementation analyses using a MET3-TIM10 strain that is selectively inactivated for the expression of wild-type Tim10 showed that (i) an N-terminal deleted version of Tim10 that was previously shown to be defective in substrate binding is lethal under all conditions, but (ii) the charged residues mutant of Tim10 that is defective in assembly with Tim9 can restore growth in glucose, but not in non-fermentable carbon sources. These data suggest that formation of the hexamer is beneficial but not vital for TIM10 function, whilst the N-terminal substrate-binding region of Tim10 is essential in vivo.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Transporte Proteico , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
J Mol Biol ; 351(4): 839-49, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-16039669

RESUMO

Tim9 and Tim10 belong to the small Tim family of mitochondrial ATP-independent chaperones. They are organised in a specific hetero-oligomeric complex (TIM10) that escorts polytopic proteins into the mitochondrial inner membrane. The contributions of the individual subunits to the assembly and function of the TIM10 complex remain poorly understood. Here, we show that substrate recognition and assembly of the complex are mediated by distinct domains of the subunits. These are unrelated to the characteristic "twin CX3C" motif that is present in all small Tims and ensures proper folding of the unassembled subunits. Specifically, we show that substrate recognition is achieved by the Tim10 subunit, whilst Tim9 serves a more structural role. The N-terminal domain of Tim10 is a substrate sensor whilst its C-terminal part is essential for complex formation. By contrast, both N and C-terminal domains of Tim9 are involved in the stability of the complex.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Proteínas Mitocondriais/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Bases , DNA Fúngico/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ressonância de Plasmônio de Superfície
6.
Biochem J ; 385(Pt 1): 173-80, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15320873

RESUMO

The yeast ADP/ATP carrier (AAC) is a mitochondrial protein that is targeted to the inner membrane via the TIM10 and TIM22 translocase complexes. AAC is devoid of a typical mitochondrial targeting signal and its targeting and insertion are thought to be guided by internal amino acid sequences. Here we show that AAC contains a cryptic matrix targeting signal that can target up to two thirds of the N-terminal part of the protein to the matrix. This event is coordinated by the TIM23 translocase and displays all the features of the matrix-targeting pathway. However, in the context of the whole protein, this signal is 'masked' and rendered non-functional as the polypeptide is targeted to the inner membrane via the TIM10 and TIM22 translocases. Our data suggest that after crossing the outer membrane the whole polypeptide chain of AAC is necessary to commit the precursor to the TIM22-mediated inner membrane insertion pathway.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina 60/metabolismo , Citosol/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
7.
J Cell Sci ; 118(Pt 20): 4889-900, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16219694

RESUMO

Cenp-F is an unusual kinetochore protein in that it localizes to the nuclear matrix in interphase and the nuclear envelope at the G2/M transition; it is farnesylated and rapidly degraded after mitosis. We have recently shown that farnesylation of Cenp-F is required for G2/M progression, its localization to kinetochores, and its degradation. However, the role Cenp-F plays in mitosis has remained enigmatic. Here we show that, following repression of Cenp-F by RNA interference (RNAi), the processes of metaphase chromosome alignment, anaphase chromosome segregation and cytokinesis all fail. Although kinetochores attach to microtubules in Cenp-F-deficient cells, the oscillatory movements that normally occur following K-fibre formation are severely dampened. Consistently, inter-kinetochore distances are reduced. In addition, merotelic associations are observed, suggesting that whereas kinetochores can attach microtubules in the absence of Cenp-F, resolving inappropriate interactions is inhibited. Repression of Cenp-F does not appear to compromise the spindle checkpoint. Rather, the chromosome alignment defect induced by Cenp-F RNA interference is accompanied by a prolonged mitosis, indicating checkpoint activation. Indeed, the prolonged mitosis induced by Cenp-F RNAi is dependent on the spindle checkpoint kinase BubR1. Surprisingly, chromosomes in Cenp-F-deficient cells frequently show a premature loss of chromatid cohesion. Thus, in addition to regulating kinetochore-microtubule interactions, Cenp-F might be required to protect centromeric cohesion prior to anaphase commitment. Intriguingly, whereas most of the sister-less kinetochores cluster near the spindle poles, some align at the spindle equator, possibly through merotelic or lateral orientations.


Assuntos
Ciclo Celular , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Pareamento Cromossômico/fisiologia , Inativação Gênica , Fuso Acromático/fisiologia , Proteínas Cromossômicas não Histona/deficiência , Células HeLa , Humanos , Cinetocoros/metabolismo , Metáfase , Proteínas dos Microfilamentos , Mitose , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão , Transfecção , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA