Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Genes Dev ; 34(7-8): 544-559, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32079653

RESUMO

Excessive reactive oxygen species (ROS) can cause oxidative stress and consequently cell injury contributing to a wide range of diseases. Addressing the critical gaps in our understanding of the adaptive molecular events downstream ROS provocation holds promise for the identification of druggable metabolic vulnerabilities. Here, we unveil a direct molecular link between the activity of two estrogen-related receptor (ERR) isoforms and the control of glutamine utilization and glutathione antioxidant production. ERRα down-regulation restricts glutamine entry into the TCA cycle, while ERRγ up-regulation promotes glutamine-driven glutathione production. Notably, we identify increased ERRγ expression/activation as a hallmark of oxidative stress triggered by mitochondrial disruption or chemotherapy. Enhanced tumor antioxidant capacity is an underlying feature of human breast cancer (BCa) patients that respond poorly to treatment. We demonstrate that pharmacological inhibition of ERRγ with the selective inverse agonist GSK5182 increases antitumor efficacy of the chemotherapeutic paclitaxel on poor outcome BCa tumor organoids. Our findings thus underscore the ERRs as novel redox sensors and effectors of a ROS defense program and highlight the potential therapeutic advantage of exploiting ERRγ inhibitors for the treatment of BCa and other diseases where oxidative stress plays a central role.


Assuntos
Neoplasias da Mama/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Antineoplásicos/farmacologia , Técnicas Biossensoriais , Neoplasias da Mama/tratamento farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutamina/metabolismo , Glutationa/metabolismo , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Paclitaxel/farmacologia , Receptores de Estrogênio/genética , Rotenona/farmacologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Receptor ERRalfa Relacionado ao Estrogênio
2.
Genes Dev ; 31(12): 1228-1242, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28724614

RESUMO

Androgen receptor (AR) signaling reprograms cellular metabolism to support prostate cancer (PCa) growth and survival. Another key regulator of cellular metabolism is mTOR, a kinase found in diverse protein complexes and cellular localizations, including the nucleus. However, whether nuclear mTOR plays a role in PCa progression and participates in direct transcriptional cross-talk with the AR is unknown. Here, via the intersection of gene expression, genomic, and metabolic studies, we reveal the existence of a nuclear mTOR-AR transcriptional axis integral to the metabolic rewiring of PCa cells. Androgens reprogram mTOR-chromatin associations in an AR-dependent manner in which activation of mTOR-dependent metabolic gene networks is essential for androgen-induced aerobic glycolysis and mitochondrial respiration. In models of castration-resistant PCa cells, mTOR was capable of transcriptionally regulating metabolic gene programs in the absence of androgens, highlighting a potential novel castration resistance mechanism to sustain cell metabolism even without a functional AR. Remarkably, we demonstrate that increased mTOR nuclear localization is indicative of poor prognosis in patients, with the highest levels detected in castration-resistant PCa tumors and metastases. Identification of a functional mTOR targeted multigene signature robustly discriminates between normal prostate tissues, primary tumors, and hormone refractory metastatic samples but is also predictive of cancer recurrence. This study thus underscores a paradigm shift from AR to nuclear mTOR as being the master transcriptional regulator of metabolism in PCa.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/fisiopatologia , Receptores Androgênicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Androgênios/metabolismo , Núcleo Celular/metabolismo , DNA/metabolismo , Progressão da Doença , Humanos , Masculino , Ligação Proteica , Serina-Treonina Quinases TOR/genética , Transcrição Gênica
3.
Genes Dev ; 25(1): 41-50, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21205865

RESUMO

The tumor suppressor PML (promyelocytic leukemia protein) regulates cellular senescence and terminal differentiation, two processes that implicate a permanent exit from the cell cycle. Here, we show that the mechanism by which PML induces a permanent cell cycle exit and activates p53 and senescence involves a recruitment of E2F transcription factors bound to their promoters and the retinoblastoma (Rb) proteins to PML nuclear bodies enriched in heterochromatin proteins and protein phosphatase 1α. Blocking the functions of the Rb protein family or adding back E2Fs to PML-expressing cells can rescue their defects in E2F-dependent gene expression and cell proliferation, inhibiting the senescent phenotype. In benign prostatic hyperplasia, a neoplastic disease that displays features of senescence, PML was found to be up-regulated and forming nuclear bodies. In contrast, PML bodies were rarely visualized in prostate cancers. The newly defined PML/Rb/E2F pathway may help to distinguish benign tumors from cancers, and suggest E2F target genes as potential targets to induce senescence in human tumors.


Assuntos
Núcleo Celular/metabolismo , Senescência Celular/fisiologia , Fatores de Transcrição E2F/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Proteína da Leucemia Promielocítica , Hiperplasia Prostática/metabolismo , Transporte Proteico
4.
NPJ Aging ; 10(1): 5, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216569

RESUMO

Cellular senescence is a cell program induced by various stresses that leads to a stable proliferation arrest and to a senescence-associated secretory phenotype. Accumulation of senescent cells during age-related diseases participates in these pathologies and regulates healthy lifespan. Recent evidences point out a global dysregulated intracellular metabolism associated to senescence phenotype. Nonetheless, the functional contribution of metabolic homeostasis in regulating senescence is barely understood. In this work, we describe how the mevalonate pathway, an anabolic pathway leading to the endogenous biosynthesis of poly-isoprenoids, such as cholesterol, acts as a positive regulator of cellular senescence in normal human cells. Mechanistically, this mevalonate pathway-induced senescence is partly mediated by the downstream cholesterol biosynthetic pathway. This pathway promotes the transcriptional activity of ERRα that could lead to dysfunctional mitochondria, ROS production, DNA damage and a p53-dependent senescence. Supporting the relevance of these observations, increase of senescence in liver due to a high-fat diet regimen is abrogated in ERRα knockout mouse. Overall, this work unravels the role of cholesterol biosynthesis or level in the induction of an ERRα-dependent mitochondrial program leading to cellular senescence and related pathological alterations.

5.
Redox Biol ; 73: 103204, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810421

RESUMO

The ELN gene encodes tropoelastin which is used to generate elastic fibers that insure proper tissue elasticity. Decreased amounts of elastic fibers and/or accumulation of bioactive products of their cleavage, named elastokines, are thought to contribute to aging. Cellular senescence, characterized by a stable proliferation arrest and by the senescence-associated secretory phenotype (SASP), increases with aging, fostering the onset and progression of age-related diseases and overall aging, and has so far never been linked with elastin. Here, we identified that decrease in ELN either by siRNA in normal human fibroblasts or by knockout in mouse embryonic fibroblasts results in premature senescence. Surprisingly this effect is independent of elastic fiber degradation or elastokines production, but it relies on the rapid increase in HMOX1 after ELN downregulation. Moreover, the induction of HMOX1 depends on p53 and NRF2 transcription factors, and leads to an increase in iron, further mediating ELN downregulation-induced senescence. Screening of iron-dependent DNA and histones demethylases revealed a role for histone PHF8 demethylase in mediating ELN downregulation-induced senescence. Collectively, these results unveil a role for ELN in protecting cells from cellular senescence through a non-canonical mechanism involving a ROS/HMOX1/iron accumulation/PHF8 histone demethylase pathway reprogramming gene expression towards a senescence program.


Assuntos
Senescência Celular , Fibroblastos , Regulação da Expressão Gênica , Heme Oxigenase-1 , Ferro , Tropoelastina , Animais , Humanos , Camundongos , Fibroblastos/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Tropoelastina/metabolismo , Tropoelastina/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
6.
Cell Calcium ; 110: 102701, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736165

RESUMO

Cellular senescence is a state of stable cell proliferation arrest accompanied by a distinct secretory program impacting the senescent cell microenvironment. This phenotype can be induced by many stresses, including telomere shortening, oncogene activation, oxidative or genotoxic stress. Cellular senescence plays a key role in the organism throughout life, with beneficial effects at a young age for instance in embryonic development and wound healing, and deleterious effects during aging and in aging-related diseases. In the last decade calcium and calcium signaling have been established as critical factors in the implementation and regulation of cellular senescence. In this review we will present and discuss the main discoveries in this field, from the observation of an increased intracellular calcium concentration in senescent cells to the identification of calcium-binding proteins, calcium channels (TRP, ITPR, …) and MERCs (mitochondria-endoplasmic reticulum contact sites) as key players in this context.


Assuntos
Cálcio , Senescência Celular , Cálcio/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
7.
Mol Biomed ; 4(1): 4, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739330

RESUMO

Pancreatic cancer is one of the deadliest cancers owing to its late diagnosis and of the strong resistance to available treatments. Despite a better understanding of the disease in the last two decades, no significant improvement in patient care has been made. Senescent cells are characterized by a stable proliferation arrest and some resistance to cell death. Increasing evidence suggests that multiple lines of antitumor therapy can induce a senescent-like phenotype in cancer cells, which may participate in treatment resistance. In this study, we describe that gemcitabine, a clinically-used drug against pancreatic cancer, induces a senescent-like phenotype in highly chemoresistant pancreatic cancer cells in vitro and in xenografted tumors in vivo. The use of ABT-263, a well-described senolytic compound targeting Bcl2 anti-apoptotic proteins, killed pancreatic gemcitabine-treated senescent-like cancer cells in vitro. In vivo, the combination of gemcitabine and ABT-263 decreased tumor growth, whereas their individual administration had no effect. Together these data highlight the possibility of improving the efficacy of conventional chemotherapies against pancreatic cancer by eliminating senescent-like cancer cells through senolytic intervention. Further studies testing different senolytics or their combination with available treatments will be necessary to optimize preclinical data in mouse models before transferring these findings to clinical trials.

8.
Cell Rep ; 38(12): 110534, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320709

RESUMO

A growing number of studies support a direct role for nuclear mTOR in gene regulation and chromatin structure. Still, the scarcity of known chromatin-bound mTOR partners limits our understanding of how nuclear mTOR controls transcription. Herein, comprehensive mapping of the mTOR chromatin-bound interactome in both androgen-dependent and -independent cellular models of prostate cancer (PCa) identifies a conserved 67-protein interaction network enriched for chromatin modifiers, transcription factors, and SUMOylation machinery. SUMO2/3 and nuclear pore protein NUP210 are among the strongest interactors, while the androgen receptor (AR) is the dominant androgen-inducible mTOR partner. Further investigation reveals that NUP210 facilitates mTOR nuclear trafficking, that mTOR and AR form a functional transcriptional module with the nucleosome remodeling and deacetylase (NuRD) complex, and that androgens specify mTOR-SUMO2/3 promoter-enhancer association. This work identifies a vast network of mTOR-associated nuclear complexes advocating innovative molecular strategies to modulate mTOR-dependent gene regulation with conceivable implications for PCa and other diseases.


Assuntos
Cromatina , Neoplasias da Próstata , Androgênios/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
9.
J Mol Endocrinol ; 66(1): R1-R14, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112791

RESUMO

Aging is a degenerative process that results from the accumulation of cellular and tissue lesions, leading progressively to organ dysfunction and death. Although the biological basis of human aging remains unclear, a large amount of data points to deregulated mitochondrial function as a central regulator of this process. Mounting years of research on aging support the notion that the engendered age-related decline of mitochondria is associated with alterations in key pathways that regulate mitochondrial biology. Particularly, several studies in the last decade have emphasized the importance of the estrogen-related receptor (ERR) family of nuclear receptors, master regulators of mitochondrial function, and their transcriptional coactivators PGC-1s in this context. In this review, we summarize key discoveries implicating the PGC-1/ERR axis in age-associated mitochondrial deregulation and tissue dysfunction. Also, we highlight the pharmacological potential of targeting the PGC-1/ERR axis to alleviate the onset of aging and its adverse effects.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/fisiologia , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Biomarcadores , Senescência Celular , Humanos , Receptores de Estrogênio/genética , Fatores de Transcrição/genética
10.
Elife ; 102021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181531

RESUMO

Chemotherapy resistance is a critical barrier in cancer treatment. Metabolic adaptations have been shown to fuel therapy resistance; however, little is known regarding the generality of these changes and whether specific therapies elicit unique metabolic alterations. Using a combination of metabolomics, transcriptomics, and functional genomics, we show that two anthracyclines, doxorubicin and epirubicin, elicit distinct primary metabolic vulnerabilities in human breast cancer cells. Doxorubicin-resistant cells rely on glutamine to drive oxidative phosphorylation and de novo glutathione synthesis, while epirubicin-resistant cells display markedly increased bioenergetic capacity and mitochondrial ATP production. The dependence on these distinct metabolic adaptations is revealed by the increased sensitivity of doxorubicin-resistant cells and tumor xenografts to buthionine sulfoximine (BSO), a drug that interferes with glutathione synthesis, compared with epirubicin-resistant counterparts that are more sensitive to the biguanide phenformin. Overall, our work reveals that metabolic adaptations can vary with therapeutics and that these metabolic dependencies can be exploited as a targeted approach to treat chemotherapy-resistant breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Epirubicina/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
11.
Oncogene ; 39(41): 6406-6420, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32855526

RESUMO

DNA methylation is implicated in the acquisition of malignant phenotypes, and the use of epigenetic modulating drugs is a promising anti-cancer therapeutic strategy. 5-aza-2'deoxycytidine (decitabine, 5-azadC) is an FDA-approved DNA methyltransferase (DNMT) inhibitor with proven effectiveness against hematological malignancies and more recently triple-negative breast cancer (BC). Herein, genetic or pharmacological studies uncovered a hitherto unknown feedforward molecular link between DNMT1 and the estrogen related receptor α (ERRα), a key transcriptional regulator of cellular metabolism. Mechanistically, DNMT1 promotes ERRα stability which in turn couples DNMT1 transcription with that of the methionine cycle and S-adenosylmethionine synthesis to drive DNA methylation. In vitro and in vivo investigation using a pre-clinical mouse model of BC demonstrated a clear therapeutic advantage for combined administration of the ERRα inhibitor C29 with 5-azadC. A large-scale bisulfite genomic sequencing analysis revealed specific methylation perturbations fostering the discovery that reversal of promoter hypermethylation and consequently derepression of the tumor suppressor gene, IRF4, is a factor underlying the observed BC suppressive effects. This work thus uncovers a critical role of ERRα in the crosstalk between transcriptional control of metabolism and epigenetics and illustrates the potential for targeting ERRα in combination with DNMT inhibitors for BC treatment and other epigenetics-driven malignancies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Fatores Reguladores de Interferon/genética , Receptores de Estrogênio/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/efeitos dos fármacos , Decitabina/farmacologia , Decitabina/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Estabilidade Proteica , Receptores de Estrogênio/antagonistas & inibidores , S-Adenosilmetionina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor ERRalfa Relacionado ao Estrogênio
12.
J Cell Mol Med ; 13(9B): 3960-72, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19243476

RESUMO

Melanomas remain associated with dismal prognosis because they are naturally resistant to apoptosis and they markedly metastasize. Up-regulated expression of sodium pump alpha sub-units has previously been demonstrated when comparing metastatic to non-metastatic melanomas. Our previous data revealed that impairing sodium pump alpha1 activity by means of selective ligands, that are cardiotonic steroids, markedly impairs cell migration and kills apoptosis-resistant cancer cells. The objective of this study was to determine the expression levels of sodium pump alpha sub-units in melanoma clinical samples and cell lines and also to characterize the role of alpha1 sub-units in melanoma cell biology. Quantitative RT-PCR, Western blotting and immunohistochemistry were used to determine the expression levels of sodium pump alpha sub-units. In vitro cytotoxicity of various cardenolides and of an anti-alpha1 siRNA was evaluated by means of MTT assay, quantitative videomicroscopy and through apoptosis assays. The in vivo activity of a novel cardenolide UNBS1450 was evaluated in a melanoma brain metastasis model. Our data show that all investigated human melanoma cell lines expressed high levels of the alpha1 sub-unit, and 33% of human melanomas displayed significant alpha1 sub-unit expression in correlation with the Breslow index. Furthermore, cardenolides (notably UNBS1450; currently in Phase I clinical trials) displayed marked anti-tumour effects against melanomas in vitro. This activity was closely paralleled by decreases in cMyc expression and by increases in apoptotic features. UNBS1450 also displayed marked anti-tumour activity in the aggressive human metastatic brain melanoma model in vivo. The alpha1 sodium pump sub-unit could represent a potential novel target for combating melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Melanoma/terapia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Apoptose , Cardenolídeos/farmacologia , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Nus , Microscopia de Vídeo/métodos , Metástase Neoplásica , Transplante de Neoplasias , Temozolomida
13.
Mol Cancer Res ; 16(9): 1396-1405, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29784665

RESUMO

Reprogramming of cellular metabolism is an important feature of prostate cancer, including altered lipid metabolism. Recently, it was observed that the nuclear fraction of mTOR is essential for the androgen-mediated metabolic reprogramming of prostate cancer cells. Herein, it is demonstrated that the androgen receptor (AR) and mTOR bind to regulatory regions of sterol regulatory element-binding transcription factor 1 (SREBF1) to control its expression, whereas dual activation of these signaling pathways also promotes SREBF1 cleavage and its translocation to the nucleus. Consequently, SREBF1 recruitment to regulatory regions of its target genes is induced upon treatment with the synthetic androgen R1881, an effect abrogated upon inhibition of the mTOR signaling pathway. In turn, pharmacologic and genetic inhibition of SREBF1 activity impairs the androgen-mediated induction of the key lipogenic genes fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD1). Consistent with these observations, the expression of the SREBF1, FASN, and SCD1 genes is significantly correlated in human prostate cancer tumor clinical specimens. Functionally, blockade of SREBF1 activity reduces the androgen-driven lipid accumulation. Interestingly, decreased triglyceride accumulation observed upon SREBF1 inhibition is paralleled by an increase in mitochondrial respiration, indicating a potential rewiring of citrate metabolism in prostate cancer cells. Altogether, these data define an AR/mTOR nuclear axis, in the context of prostate cancer, as a novel pathway regulating SREBF1 activity and citrate metabolism.Implications: The finding that an AR/mTOR complex promotes SREBF1 expression and activity enhances our understanding of the metabolic adaptation necessary for prostate cancer cell growth and suggests novel therapeutic approaches to target metabolic vulnerabilities in tumors. Mol Cancer Res; 16(9); 1396-405. ©2018 AACR.


Assuntos
Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Respiração Celular , Técnicas de Silenciamento de Genes , Humanos , Metabolismo dos Lipídeos , Masculino , Mitocôndrias/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Serina-Treonina Quinases TOR/genética , Ativação Transcricional
14.
Aging (Albany NY) ; 9(10): 2137-2162, 2017 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-29081404

RESUMO

The mechanism by which p53 suppresses tumorigenesis remains poorly understood. In the context of aberrant activation of the JAK/STAT5 pathway, SOCS1 is required for p53 activation and the regulation of cellular senescence. In order to identify p53 target genes acting during the senescence response to oncogenic STAT5A, we characterized the transcriptome of STAT5A-expressing cells after SOCS1 inhibition. We identified a set of SOCS1-dependent p53 target genes that include several secreted proteins and genes regulating oxidative metabolism and ferroptosis. Exogenous SOCS1 was sufficient to regulate the expression of p53 target genes and sensitized cells to ferroptosis. This effect correlated with the ability of SOCS1 to reduce the expression of the cystine transporter SLC7A11 and the levels of glutathione. SOCS1 and SOCS1-dependent p53 target genes were induced during the senescence response to oncogenic STAT5A, RasV12 or the tumor suppressor PML. However, while SOCS1 sensitized cells to ferroptosis neither RasV12 nor STAT5A mimicked the effect. Intriguingly, PML turned cells highly resistant to ferroptosis. The results indicate different susceptibilities to ferroptosis in senescent cells depending on the trigger and suggest the possibility of killing senescent cells by inhibiting pathways that mediate ferroptosis resistance.


Assuntos
Senescência Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos
15.
Cancer Res ; 77(2): 378-389, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27821488

RESUMO

How androgen signaling contributes to the oncometabolic state of prostate cancer remains unclear. Here, we show how the estrogen-related receptor γ (ERRγ) negatively controls mitochondrial respiration in prostate cancer cells. Sustained treatment of prostate cancer cells with androgens increased the activity of several metabolic pathways, including aerobic glycolysis, mitochondrial respiration, and lipid synthesis. An analysis of the intersection of gene expression, binding events, and motif analyses after androgen exposure identified a metabolic gene expression signature associated with the action of ERRγ. This metabolic state paralleled the loss of ERRγ expression. It occurred in both androgen-dependent and castration-resistant prostate cancer and was associated with cell proliferation. Clinically, we observed an inverse relationship between ERRγ expression and disease severity. These results illuminate a mechanism in which androgen-dependent repression of ERRγ reprograms prostate cancer cell metabolism to favor mitochondrial activity and cell proliferation. Furthermore, they rationalize strategies to reactivate ERRγ signaling as a generalized therapeutic approach to manage prostate cancer. Cancer Res; 77(2); 378-89. ©2016 AACR.


Assuntos
Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Androgênios/metabolismo , Animais , Linhagem Celular Tumoral , Respiração Celular/fisiologia , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Reação em Cadeia da Polimerase , Modelos de Riscos Proporcionais , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Transdução de Sinais/fisiologia , Transcriptoma
16.
Cancer Res ; 76(11): 3252-64, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27206849

RESUMO

Promyelocytic leukemia (PML) plays a tumor suppressive role by inducing cellular senescence in response to oncogenic stress. However, tumor cell lines fail to engage in complete senescence upon PML activation. In this study, we investigated the mechanisms underlying resistance to PML-induced senescence. Here, we report that activation of the cyclin-dependent kinases CDK4 and CDK6 are essential and sufficient to impair senescence induced by PML expression. Disrupting CDK function by RNA interference or pharmacological inhibition restored senescence in tumor cells and diminished their tumorigenic potential in mouse xenograft models. Complete senescence correlated with an increase in autophagy, repression of E2F target genes, and an gene expression signature of blocked DNA methylation. Accordingly, treatment of tumor cells with inhibitors of DNA methylation reversed resistance to PML-induced senescence. Further, CDK inhibition with palbociclib promoted autophagy-dependent degradation of the DNA methyltransferase DNMT1. Lastly, we found that CDK4 interacted with and phosphorylated DNMT1 in vitro, suggesting that CDK activity is required for its stabilization. Taken together, our findings highlight a potentially valuable feature of CDK4/6 inhibitors as epigenetic modulators to facilitate activation of senescence programs in tumor cells. Cancer Res; 76(11); 3252-64. ©2016 AACR.


Assuntos
Senescência Celular/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica , Proteína da Leucemia Promielocítica/metabolismo , Neoplasias da Próstata/genética , Animais , Apoptose , Western Blotting , Ciclo Celular , Proliferação de Células , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Metilação de DNA , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Proteína da Leucemia Promielocítica/genética , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
PLoS One ; 11(9): e0162995, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27684068

RESUMO

OBJECTIVE: IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues. METHODS: Control and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells. RESULTS: Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues. CONCLUSIONS: Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome.

20.
Cell Cycle ; 14(15): 2408-21, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26029982

RESUMO

Expression of oncogenes or short telomeres can trigger an anticancer response known as cellular senescence activating the p53 and RB tumor suppressor pathways. This mechanism is switched off in most tumor cells by mutations in p53 and RB signaling pathways. Surprisingly, p53 disabled tumor cells could be forced into senescence by expression of a mutant allele of the nuclear envelope protein lamin A. The pro-senescence lamin A mutant contains a deletion in the sequence required for processing by the protease ZMPSTE24 leading to accumulation of farnesylated lamin A in the nuclear envelope. In addition, the serine at position 22, a target for CDK1-dependent phosphorylation, was mutated to alanine, preventing CDK1-catalyzed nuclear envelope disassembly. The accumulation of this mutant lamin A compromised prophase to prometaphase transition leading to invaginations of the nuclear lamina, nuclear fragmentation and impaired chromosome condensation. Cells exited this impaired mitosis without cytokinesis and re-replicated their DNA ultimately arresting in interphase as polyploid cells with features of cellular senescence including increased expression of inflammatory gene products and a significant reduction of tumorigenicity in vivo.


Assuntos
Senescência Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Lamina Tipo A/genética , Neoplasias/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Quinase CDC2 , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular/genética , Humanos , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Membrana Nuclear/metabolismo , Fosforilação , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA