Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892069

RESUMO

Aging comes with the loss of muscle and bone mass, leading to a condition known as osteosarcopenia. Circulating, cellular, and tissue biomarkers research for osteosarcopenia is relatively scarce and, currently, no established biomarkers exist. Here we find that osteosarcopenic patients exhibited elevated basophils and TNFα levels, along with decreased aPPT, PT/INR, IL15, alpha-Klotho, DHEA-S, and FGF-2 expression and distinctive bone and muscle tissue micro-architecture and biomarker expressions. They also displayed an increase in osteoclast precursors with a concomitant imbalance towards spontaneous osteoclastogenesis. Similarities were noted with osteopenic and sarcopenic patients, including a lower neutrophil percentage and altered cytokine expression. A linear discriminant analysis (LDA) on models based on selected biomarkers showed a classification accuracy in the range of 61-78%. Collectively, our data provide compelling evidence for novel biomarkers for osteosarcopenia that may hold potential as diagnostic tools to promote healthy aging.


Assuntos
Biomarcadores , Sarcopenia , Humanos , Biomarcadores/sangue , Sarcopenia/metabolismo , Sarcopenia/sangue , Sarcopenia/patologia , Projetos Piloto , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Citocinas/metabolismo , Citocinas/sangue , Osteoclastos/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/patologia
2.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686179

RESUMO

In the context of a large animal model of early osteoarthritis (OA) treated by orthobiologics, the purpose of this study was to reveal relations between articular tissues structure/composition and cartilage viscoelasticity. Twenty-four sheep, with induced knee OA, were treated by mesenchymal stem cells in various preparations-adipose-derived mesenchymal stem cells (ADSCs), stromal vascular fraction (SVF), and amniotic endothelial cells (AECs)-and euthanized at 3 or 6 months to evaluate the (i) biochemistry of synovial fluid; (ii) histology, immunohistochemistry, and histomorphometry of articular cartilage; and (iii) viscoelasticity of articular cartilage. After performing an initial analysis to evaluate the correlation and multicollinearity between the investigated variables, this study used machine learning (ML) models-Variable Selection Using Random Forests (VSURF) and Extreme Gradient Boosting (XGB)-to classify variables according to their importance and employ them for interpretation and prediction. The experimental setup revealed a potential relation between cartilage elastic modulus and cartilage thickness (CT), synovial fluid interleukin 6 (IL6), and prostaglandin E2 (PGE2), and between cartilage relaxation time and CT and PGE2. SVF treatment was the only limit on the deleterious OA effect on cartilage viscoelastic properties. This work provides indications to future studies aiming to highlight these and other relationships and focusing on advanced regeneration targets.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Animais , Ovinos , Dinoprostona , Células Endoteliais , Aprendizado de Máquina
3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958603

RESUMO

Ageing is an irreversible and inevitable biological process and a significant risk factor for the development of various diseases, also affecting the musculoskeletal system, resulting from the accumulation of cell senescence. The aim of this systematic review was to collect the in vitro studies conducted over the past decade in which cell senescence was induced through various methods, with the purpose of evaluating the molecular and cellular mechanisms underlying senescence and to identify treatments capable of delaying senescence. Through three electronic databases, 22 in vitro studies were identified and included in this systematic review. Disc, cartilage, or muscle cells or tissues and mesenchymal stem cells were employed to set-up in vitro models of senescence. The most common technique used to induce cell senescence was the addition to the culture medium of tumor necrosis factor (TNF)α and/or interleukin (IL)1ß, followed by irradiation, compression, hydrogen peroxide (H2O2), microgravity, in vitro expansion up to passage 10, and cells harvested from damaged areas of explants. Few studies evaluated possible treatments to anti-senescence effects. The included studies used in vitro models of senescence in musculoskeletal tissues, providing powerful tools to evaluate age-related changes and pathologies, also contributing to the development of new therapeutic approaches.


Assuntos
Senescência Celular , Células Cultivadas , Peróxido de Hidrogênio/farmacologia
4.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069274

RESUMO

Musculoskeletal frailty-a common and debilitating condition linked to aging and chronic diseases-presents a major public health issue. In vivo models have become a key tool for researchers as they investigate the condition's underlying mechanisms and develop effective interventions. This systematic review examines the current body of research on in vivo models of musculoskeletal frailty, without any time constraints. To achieve this aim, we utilized three electronic databases and incorporated a total of 11 studies. Our investigation delves into varied animal models that simulate specific features of musculoskeletal frailty, including muscle loss, bone density reduction, and functional decline. Furthermore, we examine the translational prospects of these models in augmenting our comprehension of musculoskeletal frailty and streamlining the production of groundbreaking therapeutic approaches. This review provides significant insights and guidance for healthcare researchers and practitioners who aim to combat musculoskeletal frailty, ultimately enhancing the quality of life for older adults and individuals affected by this condition.


Assuntos
Fragilidade , Humanos , Idoso , Qualidade de Vida , Envelhecimento/fisiologia , Idoso Fragilizado
5.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902249

RESUMO

In orthopedics, titanium (Ti)-alloy implants, are often considered as the first-choice candidates for bone tissue engineering. An appropriate implant coating enhances bone matrix ingrowth and biocompatibility, improving osseointegration. Collagen I (COLL) and chitosan (CS) are largely employed in several different medical applications, for their antibacterial and osteogenic properties. This is the first in vitro study that provides a preliminary comparison between two combinations of COLL/CS coverings for Ti-alloy implants, in terms of cell adhesion, viability, and bone matrix production for probable future use as a bone implant. Through an innovative spraying technique, COLL-CS-COLL and CS-COLL-CS coverings were applied over Ti-alloy (Ti-POR) cylinders. After cytotoxicity evaluations, human bone marrow mesenchymal stem cells (hBMSCs) were seeded onto specimens for 28 days. Cell viability, gene expression, histology, and scanning electron microscopy evaluations were performed. No cytotoxic effects were observed. All cylinders were biocompatible, thus permitting hBMSCs' proliferation. Furthermore, an initial bone matrix deposition was observed, especially in the presence of the two coatings. Neither of the coatings used interferes with the osteogenic differentiation process of hBMSCs, or with an initial deposition of new bone matrix. This study sets the stage for future, more complex, ex vivo or in vivo studies.


Assuntos
Quitosana , Osteogênese , Humanos , Adesão Celular , Titânio , Matriz Óssea , Colágeno , Colágeno Tipo I , Osseointegração , Ligas , Materiais Revestidos Biocompatíveis , Propriedades de Superfície
6.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806306

RESUMO

To date, several in vivo models have been used to reproduce the onset and monitor the progression of osteoarthritis (OA), and guinea pigs represent a standard model for studying naturally occurring, age-related OA. This systematic review aims to characterize the guinea pig for its employment in in vivo, naturally occurring OA studies and for the evaluation of specific disease-modifying agents. The search was performed in PubMed, Scopus, and Web of Knowledge in the last 10 years. Of the 233 records screened, 49 studies were included. Results showed that within a relatively short period of time, this model develops specific OA aspects, including cartilage degeneration, marginal osteophytes formation, and subchondral bone alterations. Disease severity increases with age, beginning at 3 months with mild OA and reaching moderate-severe OA at 18 months. Among the different strains, Dunkin Hartley develops OA at a relatively early age. Thus, disease-modifying agents have mainly been evaluated for this strain. As summarized herein, spontaneous development of OA in guinea pigs represents an excellent model for studying disease pathogenesis and for evaluating therapeutic interventions. In an ongoing effort at standardization, a detailed characterization of specific OA models is necessary, even considering the main purpose of these models, i.e., translatability to human OA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/patologia , Modelos Animais de Doenças , Cobaias , Osteoartrite/etiologia , Osteoartrite/patologia , Osteoartrite/terapia
7.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012173

RESUMO

Sheep ovariectomy (OVX) alone or associated to steroid therapy, deficient diet, or hypothalamic-pituitary disconnection has proven to be of critical importance for osteoporosis research in orthopedics. However, the impact of specific variables, such as breed, age, diet, time after OVX, and other variables, should be monitored. Thus, the design of comparative studies is mandatory to minimize the impact of these variables or to recognize the presence of unwanted variables as well as to better characterize bone remodeling in this model. Herein, we conducted a systematic review of the last 10 years on PubMed, Scopus, and Web of Knowledge considering only studies on OVX sheep where a control group was present. Of the 123 records screened, 18 studies were included and analyzed. Results showed that (i) Merino sheep are the most exploited breed; (ii) 5-6 years of age is the most used time for inducing OVX; (iii) ventral midline laparotomy is the most common approach to induce OVX; (iv) OVX associated to steroid therapy is the most widely used osteoporosis model; and (v) success of OVX was mostly verified 12 months after surgery. In detail, starting from 12 months after OVX a significant decline in bone mineral density and in microarchitectural bone parameters as well as in biochemical markers were detected in all studies in comparison to control groups. Bone alteration was also site-specific on a pattern as follows: lumbar vertebra, femoral neck, and ribs. Before 12 months from OVX and starting from 3-5 months, microarchitectural bone changes and biochemical marker alterations were present when osteoporosis was induced by OVX associated to steroid therapy. In conclusion, OVX in sheep influence bone metabolism causing pronounced systemic bone loss and structural deterioration comparable to the situation found in osteoporosis patients. Data for treating osteoporosis patients are based not only on good planning and study design but also on a correct animal use that, as suggested by 3Rs principles and by ARRIVE guidelines, includes the use of control groups to be directly contrasted with the experimental group.


Assuntos
Osteoporose , Animais , Densidade Óssea , Remodelação Óssea , Modelos Animais de Doenças , Feminino , Humanos , Osteoporose/etiologia , Osteoporose/metabolismo , Ovariectomia/efeitos adversos , Esteroides
8.
Biotechnol Bioeng ; 118(1): 465-480, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997340

RESUMO

Chondral and osteochondral lesions represent one of the most challenging problems in the orthopedic field, as these types of injuries lead to disability and worsened quality of life for patients and have an economic impact on the healthcare system. The aim of this in vivo study was to develop a new tissue engineering approach through a hybrid scaffold for osteochondral tissue regeneration made of porous polyurethane foam (PU) coated under vacuum with calcium phosphates (PU/VAC). Scaffold characterization showed a highly porous and interconnected structure. Human amniotic mesenchymal stromal cells (hAMSCs) were loaded into scaffolds using pectin (PECT) as a carrier. Osteochondral defects in medial femoral condyles of rabbits were created and randomly allocated in one of the following groups: plain scaffold (PU/VAC), scaffold with hAMSCs injected in the implant site (PU/VAC/hAMSC), scaffold with hAMSCs loaded in pectin (PU/VAC/PECT/hAMSC), and no treated defects (untreated). The therapeutic efficacy was assessed by macroscopic, histological, histomorphometric, microtomographic, and ultrastructural analyses at 3, 6, 12, and 24 weeks. Histological results showed that the scaffold was permissive to tissue growth and penetration, an immature osteocartilaginous tissue was observed at early experimental times, with a more accentuated bone regeneration in comparison with the cartilage layer in the absence of any inflammatory reaction.


Assuntos
Materiais Biomiméticos , Regeneração Óssea , Cartilagem Articular , Fêmur , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Células Imobilizadas , Fêmur/lesões , Fêmur/metabolismo , Xenoenxertos , Humanos , Masculino , Coelhos
9.
BMC Musculoskelet Disord ; 22(1): 773, 2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34511091

RESUMO

BACKGROUND: A first-year interim analysis of this two-year study suggested that intra-articular injections of highly purified, natural-origin polynucleotides and hyaluronic acid (HA) as a fixed combination (PNHA) might improve knee function and joint pain more effectively than HA alone in patients with knee osteoarthritis (OA). The purpose of the second-year analysis herein described was to verify whether the first-year interim outcomes persist over the whole two-year period. METHODS: Randomised, double-blind, HA-controlled clinical trial in 100 knee OA patients (98 randomised, 79 completing the study) in a high-specialisation tertiary care setting. The hypothesised difference of efficacy between PNHA and HA for the original sample size estimate is 20%. Treatment cycle: three intra-articular knee injections of either PNHA or HA, at baseline and weekly for two weeks. EVALUATIONS: Western Ontario and McMaster Universities (WOMAC) score and Knee Society Score (KSS) as, respectively, primary and secondary endpoints, evaluated at baseline and after 2, 6, 12, and 24 months; synovial fluid levels of mediators (at baseline and the end of the treatment cycle). Adverse effects investigated at each control visit. STATISTICAL ANALYSIS: Kruskal-Wallis test for independent samples (nonparametric one-way analysis of variance) after correction of means for age, Body Mass Index and Kellgren-Lawrence grade. If significant, pairwise post-hoc Sidak multiple comparisons. RESULTS: KSS total score and KSS pain item: significant improvement in both groups, with significantly more pain improvement in patients treated with PNHA (2-point reduction) than HA (1-point reduction). Both groups experienced significant long-term reductions in WOMAC total scores: significantly stronger in PNHA-treated patients after 24 months with a steady difference of 16% favouring PNHA in WOMAC pain subscore. No clinically significant adverse events in either group. CONCLUSIONS: The outcomes of the 2-year study confirmed that a short cycle of intra-articular treatment (3 weekly double-blind injections) with polynucleotides (long-acting viscosupplementation properties, chondrocyte activation, pain-relieving properties) in fixed combination with high molecular weight hyaluronic acid is more effective in improving knee function and pain in knee OA patients than HA alone. PNHA may be elective for viscosupplementation in knee OA patients with fastidious and resistant pain and worsening disease. TRIAL REGISTRATION: NCT02417610 . Registration, 15/04/2015. ClinicalTrials.gov database link.


Assuntos
Ácido Hialurônico , Osteoartrite do Joelho , Seguimentos , Humanos , Osteoartrite do Joelho/tratamento farmacológico , Polinucleotídeos , Resultado do Tratamento
10.
Int Orthop ; 45(2): 427-435, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32661637

RESUMO

PURPOSE: Aiming to prevent cartilage damage during early osteoarthritis (OA), the therapeutic challenge is to restore and maintain the physiological and functional properties of such a tissue with minimally invasive therapeutic strategies. METHODS: Accordingly, an in vivo model of early OA in sheep was here treated through three different cell therapies (culture expanded ADSCs, SVF, and culture expanded AECs) thus to preserve the joint surface from the progression of the pathology. Three months after the treatment injections, their performance was assessed through mechanical automated mapping (Young's modulus and cartilage thickness), gross evaluation of articular surfaces, and biochemical analysis of the synovial fluid. RESULTS: No severe degeneration was observed after three months from OA induction. Cartilage mechanical properties were crucial to identify early degeneration. All the treatments improved the macroscopic cartilage surface aspect and reduced pro-inflammatory cytokines in the synovial fluid. Among the three treatments, SVF highlighted the best performance while ADSCs the worst. CONCLUSION: Despite that the evaluated experimental time is an early follow-up and, thus, longer trial is mandatory to properly assess treatments effectiveness, the proposed multidisciplinary approach allowed to obtain preliminary, but also crucial, results concerning the reduction in OA signs on cartilage properties, in osteophyte development and in all the inflammatory markers.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Osteoartrite , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Articulação do Joelho/cirurgia , Osteoartrite/terapia , Osteoartrite do Joelho/terapia , Ovinos
11.
Calcif Tissue Int ; 107(4): 301-318, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710266

RESUMO

Mechanotransduction is pivotal in the maintenance of homeostasis in different tissues and involves multiple cell signaling pathways. In bone, mechanical stimuli regulate the balance between bone formation and resorption; osteocytes play a central role in this regulation. Dysfunctions in mechanotransduction signaling or in osteocytes response lead to an imbalance in bone homeostasis. This alteration is very relevant in some conditions such as osteoporosis and aging. Both are characterized by increased bone weakness due to different causes, for example, the increase of osteocyte apoptosis that cause an alteration of fluid space, or the alteration of molecular pathways. There are intertwined yet very different mechanisms involved among the cell-intrinsic effects of aging on bone, the cell-intrinsic and tissue-level effects of estrogen/androgen withdrawal on bone, and the effects of reduced mechanical loading on bone, which are all involved to some degree in how aged bone fails to respond properly to stress/strain compared to younger bone. This review aims at clarifying how the cellular and molecular pathways regulated and induced in bone by mechanical stimulation are altered with aging and in osteoporosis, to highlight new possible targets for antiresorptive or anabolic bone therapeutic approaches.


Assuntos
Envelhecimento , Osso e Ossos/fisiologia , Osteoporose/patologia , Suporte de Carga , Idoso , Osso e Ossos/fisiopatologia , Humanos , Mecanotransdução Celular , Osteócitos , Estresse Mecânico
12.
Clin J Sport Med ; 30(1): 1-7, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855906

RESUMO

OBJECTIVE: Pain and range of motion loss are the main clinical features of osteoarthritis (OA). Hyaluronic acid (HA) is one of the infiltrative therapies for OA treatment; however, its effectiveness is a matter of an ongoing debate in clinical practice. Polynucleotides (PNs), a DNA-derived macromolecule with natural origin and trophic activity, were found to favor cell growth and collagen production, in preclinical and clinical studies regarding cartilage regeneration. This study aimed at evaluating whether injection of PNs, in combination with HA [PNs associated with HA (PNHA)], can ameliorate pain and function of knees affected by OA, more than HA alone. DESIGN: A randomized, double-blind, controlled clinical trial. PATIENTS: The study enrolled 100 patients, then randomized to receive PNHA or HA alone (3 weekly knee I.A. injections). INTERVENTIONS AND MAIN OUTCOME MEASURES: Pain reduction, decrease of proinflammatory synovial fluid (SF) factors, and improvement in knee function were evaluated by Knee Society Score and WOMAC scores, after 2, 6, and 12 months and by biochemical and immunoenzymatic analyses of SF at the end of the treatment. RESULTS: Knee Society Score total score and pain item significantly ameliorated in both groups, showing better results in PNHA- than in the HA-treated group. A significant reduction in the WOMAC score was observed over time for both groups. No significant adverse events were reported in either group. CONCLUSIONS: These findings suggest that I.A. injection of PNs, in combination with HA, is more effective in improving knee function and pain, in a joint affected by OA, compared with HA alone.


Assuntos
Ácido Hialurônico/uso terapêutico , Osteoartrite do Joelho/tratamento farmacológico , Polinucleotídeos/uso terapêutico , Viscossuplementos/uso terapêutico , Idoso , Biomarcadores/análise , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/fisiopatologia , Dor/etiologia , Dor/prevenção & controle , Líquido Sinovial/química
13.
Int Orthop ; 44(4): 779-793, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32025798

RESUMO

PURPOSE: One of the major risk factors for OA is meniscectomy (Mx) that causes a rapid and progressive OA. Mx has been employed in various animal models, especially in large ones, to study preclinical safety and strategy effectiveness to counteract OA. The aim of the present study is to review in vivo studies, performed in sheep and published in the last ten years. METHODS: The search strategy was performed in three websites: www.scopus.com, www.pubmed.com, and www.webofknowledge.com, using "Meniscectomy and osteoarthritis in sheep" keywords. RESULTS: The 25 included studies performed unilateral total medial Mx (MMx), unilateral partial MMx, bilateral MMx, unilateral total lateral Mx (LMx), unilateral partial LMx, and bilateral LMx and MMx combined with anterior cruciate ligament transaction. The most frequently performed is the unilateral total MMx that increases changes in cartilage and subchondral bone more than the other techniques. Gross evaluations, histology, radiography, and biochemical tests are used to assess the degree of OA. The most widely tested treatments are related to scaffolds with or without mesenchymal stem cells. CONCLUSION: OA therapeutic strategies require the use of large animal models due to similarities with human joint anatomy. A protocol for future in vivo studies on post-traumatic OA is clarified.


Assuntos
Meniscectomia/efeitos adversos , Meniscos Tibiais/cirurgia , Osteoartrite do Joelho/terapia , Animais , Modelos Animais de Doenças , Meniscectomia/métodos , Meniscos Tibiais/patologia , Transplante de Células-Tronco Mesenquimais , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/patologia , Ovinos , Alicerces Teciduais
14.
J Cell Physiol ; 234(12): 21504-21518, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31062360

RESUMO

Biosensors are composed of (bio)receptors, transducers, and detection systems and are able to convert the biological stimulus into a measurable signal. This systematic review evaluates the current state of the art of innovation and research in this field, identifying the biosensors that in vitro monitor the musculoskeletal system cellular processes. Two databases found 20 in vitro studies, from January 1, 2008 to December 31, 2017, dealing with musculoskeletal system cells. The biosensors were divided into two groups based on the transduction mechanism: optical or electrochemical. The first group evaluated osteoblasts or mesenchymal stem cell (MSC) biocompatibility, viability, differentiation, alkaline phosphatase, enzyme, and protein detection. The second group detected cell impedance, ATP release, and superoxide concentration in tenocytes, osteoblasts, MSCs, and myoblasts. This review highlighted that the in vitro scenario is still at an early phase and limited for what concerns both the type of bioanalyte and for the type of system detector used.


Assuntos
Sistema Musculoesquelético/fisiopatologia , Fenômenos Fisiológicos/fisiologia , Animais , Técnicas Biossensoriais/métodos , Humanos , Células-Tronco Mesenquimais/fisiologia , Mioblastos/fisiologia , Osteoblastos/fisiologia
15.
J Cell Physiol ; 234(2): 1588-1605, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30144075

RESUMO

Galectins are members of the animal lectin family that bind to the ß-galactoside-containing carbohydrate moieties of glycoconjugates. They seem to have an important role in the pathophysiology of several diseases, including arthritis. Osteoarthritis (OA) and rheumatoid arthritis (RA) are chronic conditions with few or no available therapies. In this context, galectins could provide a novel opportunity, but the precise role and mechanism of their involvement in arthritis are still not fully understood. This descriptive systematic literature review summarizes in vitro, in vivo, and clinical studies that analyzed and examined the role and mechanism of action of galectins in arthritis to highlight and clarify their possible translation implication. This review yielded promising evidence that individual galectins, in particular galectin-1, -3, and -9, could play positive or negative roles in the pathogenesis of arthritis, especially in RA and OA. It also emphasized the cell-dependent role of these galectins. This is particularly true for galectin-1, which was shown to have a protective anti-inflammatory role in RA, while it seemed to be associated with cartilage degeneration in OA. In summary, this review underlined that manipulation of certain galectins can suppress or aggravate disease symptoms in arthritis animal models, demonstrating the therapeutic potential of galectins for the treatment of RA and OA. Nevertheless, despite the fact that galectin therapy and therapies acting on galectin expression seem to be an interesting and important opportunity for research, we highlighted that further investigation is necessary to carefully evaluate their potential clinical implications in arthritis.


Assuntos
Artrite/metabolismo , Galectinas/metabolismo , Articulações/metabolismo , Pesquisa Translacional Biomédica , Animais , Antirreumáticos/uso terapêutico , Artrite/fisiopatologia , Artrite/terapia , Galectinas/uso terapêutico , Humanos , Articulações/efeitos dos fármacos , Articulações/fisiopatologia , Prognóstico , Transdução de Sinais
16.
Int Orthop ; 43(1): 25-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30324310

RESUMO

PURPOSE: To evaluate the regenerative potential of surnatants (SNs) from bone marrow concentrate (SN-BMC) and expanded mesenchymal stromal cells (SN-MSCs) loaded onto a collagen scaffold (SC) in comparison with cell-based treatments (BMC and MSCs) in an osteochondral (OC) defect model in rabbits. METHODS: OC defects (3 × 5 mm) were created in the rabbit femoral condyles and treated with SC alone or combined with SN-BMC, SN-MSCs, BMC, and MSCs. In control groups, the defects were left untreated. At three and six months, the quality of regenerated tissue was evaluated with macroscopic, histologic, microtomographic, and immunohistochemical assessments. The production of several immunoenzymatic markers was measured in the synovial fluid. RESULTS: All proposed treatments improved OC regeneration in comparison with untreated and SC-treated defects. Both BMC and MSCs showed a similar healing potential than their respective SNs, with the best performance exerted by BMC as demonstrated with macroscopic and histological scores and type I and II collagen results. CONCLUSIONS: SNs loaded onto SC exerted a positive effect on OC defect regeneration, underlying the biological significance of the trophic factors, thus potentially opening new opportunities for the use of cell-free-based therapies. BMC was confirmed to be the most beneficial treatment.


Assuntos
Transplante de Medula Óssea , Fraturas Intra-Articulares/cirurgia , Transplante de Células-Tronco Mesenquimais , Animais , Medula Óssea/cirurgia , Células da Medula Óssea , Colágeno/metabolismo , Articulação do Joelho , Células-Tronco Mesenquimais/fisiologia , Modelos Animais , Coelhos , Cicatrização
17.
J Cell Physiol ; 233(6): 4423-4442, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29159853

RESUMO

Tissue regenerative medicine combines the use of cells, scaffolds, and molecules to repair damaged tissues. Different cell types are employed for musculoskeletal diseases, both differentiated and mesenchymal stromal cells (MSCs). In recent years, the hypothesis that cell-based therapy is guided principally by cell-secreted factors has become increasingly popular. The aim of the present literature review was to evaluate preclinical and clinical studies that used conditioned medium (CM), rich in cell-factors, for musculoskeletal regeneration. Thirty-one were in vitro, 12 in vivo studies, 1 was a clinical study, and 2 regarded extracellular vesicles. Both differentiated cells and MSCs produce CM that induces reduction in inflammation and increases synthetic activity. MSC recruitment and differentiation, endothelial cell recruitment and angiogenesis have also been observed. In vivo studies were performed with CM in bone and periodontal defects, arthritis and muscle dystrophy pathologies. The only clinical study was performed with CM from MSCs in patients needing alveolar bone regeneration, showing bone formation and no systemic or local complications. Platelet derived growth factor receptor ß, C3a, vascular endothelial growth factor, monocyte chemoattractant protein-1 and -3, interleukin 3 and 6, insulin-like growth factor-I were identified as responsible of cell migration, proliferation, osteogenic differentiation, and angiogenesis. The use of CM could represent a new regenerative treatment in several musculoskeletal pathologies because it overcomes problems associated with the use of cells and avoids the use of exogenous GFs or gene delivery systems. However, some issues remain to be clarified.


Assuntos
Terapia Biológica/métodos , Meios de Cultivo Condicionados/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doenças Musculoesqueléticas/terapia , Sistema Musculoesquelético/metabolismo , Comunicação Parácrina , Regeneração , Medicina Regenerativa/métodos , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Doenças Musculoesqueléticas/metabolismo , Doenças Musculoesqueléticas/fisiopatologia , Sistema Musculoesquelético/fisiopatologia , Fenótipo , Transdução de Sinais
18.
J Cell Physiol ; 233(1): 291-301, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28240358

RESUMO

The dynamic metabolism and the numerous roles of bone tissue necessitate a suitable in vitro model to represent them. In order to investigate the interaction among the several cell types composing bone microenvironment, we studied a tri-culture model including human osteoblasts (OBs), osteoclasts (OCs), and endothelial cells (HUVEC). While OBs are essential for bone deposition and OCs for bone resorption, the vasculature is necessary to provide growth factors, nutrients, and oxygen in the mature tissue. The results of this study showed a strong mutual influence between OBs, OCs, and HUVEC in term of proliferation, viability, and activity (release of ALP, Coll I, OPG, RANKL, VEGF, CTSK, TGFß, and IL-6). The behavior of the single cultures demonstrated to be different compared to the bi- or tri-cultures and depending on the cell types involved: the coexistence of OBs and OCs stimulated the synthetic activity of both cell types, while the presence of HUVEC induced a stimulating role for OBs but mainly an inhibitory effect for OC. In addition, evidence of the effects of OBs and OCs on HUVEC is highlighted by their morphology: regular and able to "sketch" little vessels in presence of OBs, more disorganized and heterogeneous in presence of OCs. Taken together, these observations well characterize an advanced cellular model to be used as starting point for mimicking bone microenvironment in vivo, thus reducing the use of animals in the preclinical phase and offering a more reliable tool to test new and innovative biomaterials.


Assuntos
Remodelação Óssea , Comunicação Celular , Técnicas de Cultura de Células , Microambiente Celular , Células Endoteliais da Veia Umbilical Humana/fisiologia , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteogênese , Biomarcadores/metabolismo , Linhagem Celular , Forma Celular , Sobrevivência Celular , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Fisiológica , Fenótipo , Fatores de Tempo
19.
J Cell Physiol ; 233(3): 2645-2656, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28786478

RESUMO

Osteolysis is the main limiting cause for the survival of an orthopedic prosthesis and is accompanied by an enhancement in osteoclastogenesis and inflammation, due by wear debris formation. Unfortunately therapeutic treatments, besides revision surgery, are not available. The aim of the present study was to evaluate the effects of Pulsed Electro Magnetic Fields (PEMFs) and platelet rich plasma (PRP), alone or in combination, in an in vitro model of osteolysis. Rats peripheral blood mononuclear cells were cultured on Ultra High Molecular Weight Polyethylene particles and divided into four groups of treatments: (1) PEMF stimulation (12 hr/day, 2.5 mT, 75 Hz, 1.3 ms pulse duration); (2) 10% PRP; (3) combination of PEMFs, and PRP; (4) no treatment. Treatments were performed for 3 days and cell viability, osteoclast number, expression of genes related to osteoclastogenesis and inflammation and production of pro-inflammatory cytokines were assessed up to 14 days. PEMF stimulation exerted best results because it increased cell viability at early time points and counteracted osteoclastogenesis at 14 days. On the contrary, PRP increased osteoclastogenesis and reduced cell viability in comparison to PEMFs alone. The combination of PEMFs and PRP increased cell viability over time and reduced osteoclastogenesis in comparison to PRP alone. However, these positive results did not exceed the level achieved by PEMF alone. At longer time points PEMF could not counteract osteoclastogenesis increased by PRP. Regarding inflammation, all treatments maintained the production of pro-inflammatory cytokines at low level, although PRP increased the level of interleukin 1 beta.


Assuntos
Campos Eletromagnéticos , Macrófagos/metabolismo , Magnetoterapia/métodos , Osteoclastos/metabolismo , Osteogênese , Osteólise/terapia , Plasma Rico em Plaquetas/metabolismo , Polietilenos/química , Falha de Prótese , Animais , Sobrevivência Celular , Células Cultivadas , Terapia Combinada , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Macrófagos/patologia , Masculino , Osteoclastos/patologia , Osteogênese/genética , Osteólise/sangue , Osteólise/genética , Osteólise/patologia , Desenho de Prótese , Ratos Endogâmicos F344 , Fatores de Tempo
20.
J Cell Physiol ; 232(9): 2299-2307, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27791262

RESUMO

Polydeoxyribonucleotides (PDRNs) are low molecular weight DNA molecules of natural origin that stimulate cell migration and growth, extracellular matrix (ECM) protein production, and reduce inflammation. Most preclinical and clinical studies on tissue regeneration with PDRNs focused on skin, and only few are about musculoskeletal tissues. Starting from an overview on skin regeneration studies, through the analysis of in vitro, in vivo, and clinical studies (1990-2016), the present review aimed at defining the effects of PDRN and their mechanisms of action in the regeneration of musculoskeletal tissues. This would also help future researches in this area. A total of 29 studies were found by PubMed and www.webofknowledge.com searches: 20 were on skin (six in vitro, six in vivo, one vitro/vivo, seven clinical studies), while the other nine regarded bone (one in vitro, two in vivo, one clinical studies), cartilage (one in vitro, one vitro/vivo, two clinical studies), or tendon (one clinical study) tissues regeneration. PDRNs improved cell growth, tissue repair, ECM proteins, physical activity, and reduced pain and inflammation, through the activation of adenosine A2A receptor. PDRNs are currently used for bone, cartilage, and tendon diseases, with a great variability regarding the PDRN dosage to be used in clinical practice, while the dosage for skin regeneration is well established. PDRNs are usually administered from a minimum of three to a maximum of five times and they act trough the activation of A2A receptor. Further studies are advisable to confirm the effectiveness of PDRNs and to standardize the PDRN dose. J. Cell. Physiol. 232: 2299-2307, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Sistema Musculoesquelético/metabolismo , Polidesoxirribonucleotídeos/metabolismo , Receptores A2 de Adenosina/metabolismo , Regeneração , Pele/metabolismo , Animais , Remodelação Óssea , Movimento Celular , Proliferação de Células , Matriz Extracelular/metabolismo , Humanos , Sistema Musculoesquelético/patologia , Sistema Musculoesquelético/fisiopatologia , Transdução de Sinais , Pele/patologia , Pele/fisiopatologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA