Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Toxicol Environ Health A ; 87(2): 77-90, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37942931

RESUMO

The aim of this cross-sectional study was to compare workplace conditions and metal exposures in 431 waste pickers who worked nearby at the Estrutural Dump in Brasilia utilizing hair (n = 310) and nail (n = 355) as matrices of exposure. Waste pickers were grouped according to their workplace (open waste dump: G1 and sorting plants: G2). Hair and nail samples were collected and analyzed using ICP-MS. The work duration in the facilities was significantly different between the groups with averages of 16.46 (8.48) yrs and 9.26 (6.28) yrs for hair donors in G1 and G2, and 15.92 (7.72) yrs and 8.55 (5.77) yrs for toenail donors in G1 and G2, respectively. The arithmetic means (µg/g) of cadmium, copper, lead, and manganese in hair were significantly higher in G2 (0.076 ± 0.133; 19.61 ± 18.16; 2.27 ± .56 and 3.87 ± 5.59, respectively) compared to G1 (0.069 ± 0.235; 15.72 ± 15.18; 1.72 ± 4.04 and 3.65 ± 5.5, respectively). Concentrations of arsenic, barium, cadmium, copper, cobalt, lead, manganese, and molybdenum in nail were significantly higher in G2 (0.57 ± 0.39; 22.74 ± 42.06; 0.1 ± 0.08; 22.7 ± 51.60; 0.48 ± 0.45; 4.69 ± 9.43; 19.07 ± 20.75; 1.80 ± 1.76, respectively) compared to G1 (0.40 ± 0.28; 15.32 ± 22.31; 0.08 ± 0.11; 11.91 ± 16.25; 0.37 ± 0.37; 3.94 ± 15.04; 13.01 ± 19.08; 1.16 ± 1.80, respective. Our findings suggest that the studied population was exposed to toxic metals and indicates the need for chemical exposure prevention policies to monitor chemical risk exposures in waste pickers.


Assuntos
Cobre , Eliminação de Resíduos , Cádmio , Manganês , Unhas/química , Brasil , Estudos Transversais , Reciclagem , Metais , Cabelo/química
2.
Environ Geochem Health ; 45(5): 1183-1200, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35711076

RESUMO

Uranium is chemo- and radiotoxic element which can cause multifactorial health hazards. Natural and anthropogenic uranium contamination raises concerns about potential public health problems. Natural contamination plays a significant role with regard to uranium exposure in the general population, whereas anthropogenic contamination leads to occupational uranium exposure, particularly in nuclear industry workers. In this review, we present a state-of-the-art status concerning uranium-induced health risks with a focus on epidemiological findings of uranium processing and enrichment plant workers. We provide a general overview of physicochemical properties of uranium and analytical methods for measuring or monitoring uranium, describe environmental and occupational exposure scenarios, and discuss the challenges for objectively investigating risks from uranium exposure.


Assuntos
Exposição Ocupacional , Urânio , Humanos , Urânio/toxicidade , Urânio/análise
3.
J Occup Environ Hyg ; 18(12): 555-569, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34586037

RESUMO

Based on epidemiological records of workers at Ni operations, regulatory guidelines commonly target specific Ni compounds for setting exposure limits. Thus, reliable methods of Ni speciation in airborne dust samples are required for effective monitoring of workplace exposure. Zatka sequential leaching has been routinely performed industry-wide since the 1990s for characterization of Ni in dust samples; however, limitations related to leaching kinetics have been identified, and optimization of the methodology is required to improve accuracy of data. In this study, Ni characterization of dust collected from a stainless steel operation was performed using Zatka sequential leaching (original and modified protocols) and quantitative mineralogy (QEMSCAN), a method novel to the field of industrial hygiene. Mineral analysis was also performed on bulk material collected from selected work areas at the plant. The results are compared with the objective of identifying opportunities to optimize the methods for characterizing dust that is unique to stainless steel manufacturing. The quantitative mineralogical analysis determined that the Ni dust is composed of oxidic Ni (chromite and trevorite, >80% of the Ni in most samples) and metallic Ni (Ni-Fe alloy), and the results were validated against chemical assays and alternate methods of mineral characterization. In contrast, the original Zatka method erroneously identified soluble Ni as a major Ni contributor, whereas the modified Zatka method identified sulfidic Ni. The mineralogy identified Ni-barren dust and grain sizes and liberation of individual Ni compounds as potential factors that can affect leaching selectivity. Clearly, for any sequential leaching method to be useful for these workplaces, they should be optimized by including reference materials that are representative of Ni substances present at stainless steel operations (chromite, trevorite, and Ni-Fe alloy). Improving methods of sequential leaching is important because the resolution of quantitative mineralogical techniques diminishes at <3 µm (respirable dust fraction). We recommend that quantitative mineralogy be performed in parallel with methods of sequential leaching to provide a robust system of characterization.


Assuntos
Poeira , Aço Inoxidável , Humanos , Local de Trabalho
4.
Ann Occup Hyg ; 57(1): 54-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22826536

RESUMO

The divergent sampling techniques for respirable dust and the analyses for crystalline silica are an important area of interest and discussion among industrial occupational hygienists in Europe. The variety of equipment for air sampling, methods and instrumentation can cause differences between results for the analysis of respirable crystalline silica (RCS). In this study, a Workplace Atmosphere Multi-sampler (WAM), developed by Adhesia, was used to compare respirable dust samplers in the workplace. This rotating device enables the comparison of 12 samplers in a workplace in each run. Seven laboratories participated in the comparison, using six different respirable dust samplers [British Cast Iron Research Association (BCIRA) to the Higgins Dewell (HD) design, Dorr Oliver, Casella SIMPEDS, SKC HD with a polycarbonate filter and polyvinylchloride filter, and the CIP10-R). Each laboratory analysed samples supplied by the samplers and reported the total respirable dust concentration and the RCS concentration. The techniques used were X-ray diffraction direct-on-filter, X-ray diffraction with deposition, infrared direct-on-filter, and infrared with potassium bromide (KBr) discs. The experiments were carried out in four different industries (enamel, sand extraction, foundry and brickworks). Generally, the SKC conductive black plastic sampler is oversampled (y = 1.52x + 0.008) and the CIP10 is undersampled (y = 0.74x + 0.068) when compared with the median air concentration. A pair-wise comparison of the different industries using t-tests indicated significant differences (P < 0.05) between the SKC conductive plastic samplers and the other samplers. The same series of statistical calculations were performed for the results obtained for RCS (quartz) and showed significant differences for the CIP10 techniques and the SKC conductive plastic cyclone analyses when using a polyvinylchloride filter.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Desenho de Equipamento , Filtração/instrumentação , Humanos , Exposição Ocupacional/análise , Saúde Ocupacional , Quartzo/análise , Dióxido de Silício/efeitos adversos , Dióxido de Silício/análise
5.
Heliyon ; 9(3): e13803, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36879976

RESUMO

Copper processing operations, such as smelters and refineries, can produce airborne particles that may impact the health of workers. At these operations, worker exposure to chemicals are regularly monitored to ensure that regulatory compliance with occupational exposure limit values (OELVs) are maintained. Determining the type of airborne particles present is important for characterizing the composition of dust exposures and better understanding the relationship between worker exposure and health. Routine methods of analysis (e.g., chemical assay) are unable to differentiate between phases containing the same elements and may result in ambiguity. A novel approach of a combination of Quantitative Evaluation of Materials by Scanning Electron Microscope (QEMSCAN) and chemical characterization was used here to evaluate airborne and settled dust collected at key locations throughout a copper smelter in Europe. The copper (Cu) phases present in the airborne dust are indicative of the activities performed at specific locations. In the batch preparation area where Cu concentrate is received, significant amounts of Cu were carried in sulfidic minerals (chalcocite, chalcopyrite/bornite, >40%), whereas near the anode and electric furnace, the majority of Cu in dust was carried in metallic and oxidic phases (60-70%). Particle size analysis of the settled dust indicates that the sulfidic and oxidic Cu minerals are more likely to become airborne over metallic Cu. Furthermore, overall Cu concentrations decreased with particle size where metallic and oxidic Cu dominate, which suggests that differences in the proportion of Cu forms present in the dust will impact how much Cu ends up in the respirable fraction. These results highlight the need to understand the characterization of Cu in dust in order to set better OELVs.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36612588

RESUMO

We provide a narrative review on the published peer-reviewed scientific literature reporting sampler efficiency, performance and comparison studies (where two or more samplers have been assessed) in laboratory settings published between 1994 and 2021 (27 year period). This review is a follow-up to our narrative review on the published peer-reviewed scientific literature reporting sampler comparison in workplace settings. Search terms were developed for Web of Science and PubMed bibliographic databases. The retrieved articles were then screened for relevance, with those studies meeting the inclusion criteria being taken forward to data extraction (25 studies). The most common fraction assessed has been the inhalable fraction, with the IOM sampler being the most studied inhalable sampler and the SKC Aluminium cyclone being the most studied respirable sampler from the identified relevant articles. The most common aerosol used has been aluminium oxide. It was evident that standardisation for these sampler performance experiments is lacking. It was not possible to identify any discernible trends for the performance of samplers when assessed with different aerosols. The need for more detailed and informative data sharing from authors is highlighted. This includes provision of clear identifiable information on the samplers used for testing, sampler flow rates (both manufacturer and those actually used in the study, with an explanation given of any differences), detailed information on the test aerosols used and the sampler substrate materials used. An identified gap in the literature is the potential to perform studies aimed at revaluating the performance of samplers to allow any longer-term temporal changes in performance to be assessed. One approach in advancing the field is to produce an updated protocol for the laboratory testing of samplers. This updated protocol would be beneficial for both the research and occupational hygiene community and would allow harmonised assessment and reporting of sampler comparison studies.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Exposição Ocupacional/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula , Aerossóis/análise , Local de Trabalho , Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/análise , Poeira/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-35162257

RESUMO

On 20 October 2020, the Working Group "Exposure Models" of the Europe Regional Chapter of the International Society of Exposure Science (ISES Europe) organised an online workshop to discuss the theoretical background of models for the assessment of occupational exposure to chemicals. In this report, participants of the workshop with an active role before and during the workshop summarise the most relevant discussion points and conclusions of this well-attended workshop. ISES Europe has identified exposure modelling as one priority area for the strategic development of exposure science in Europe in the coming years. This specific workshop aimed to discuss the main challenges in developing, validating, and using occupational-exposure models for regulatory purposes. The theoretical background, application domain, and limitations of different modelling approaches were presented and discussed, focusing on empirical "modifying-factor" or "mass-balance-based" approaches. During the discussions, these approaches were compared and analysed. Possibilities to address the discussed challenges could be a validation study involving alternative modelling approaches. The wider discussion touched upon the close relationship between modelling and monitoring and the need for better linkage of the methods and the need for common monitoring databases that include data on model parameters.


Assuntos
Exposição Ocupacional , Bases de Dados Factuais , Europa (Continente) , Humanos , Modelos Teóricos
8.
Environ Epidemiol ; 6(1): e193, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35169671

RESUMO

Immune-mediated, noncommunicable diseases-such as autoimmune and inflammatory diseases-are chronic disorders, in which the interaction between environmental exposures and the immune system plays an important role. The prevalence and societal costs of these diseases are rising in the European Union. The EXIMIOUS consortium-gathering experts in immunology, toxicology, occupational health, clinical medicine, exposure science, epidemiology, bioinformatics, and sensor development-will study eleven European study populations, covering the entire lifespan, including prenatal life. Innovative ways of characterizing and quantifying the exposome will be combined with high-dimensional immunophenotyping and -profiling platforms to map the immune effects (immunome) induced by the exposome. We will use two main approaches that "meet in the middle"-one starting from the exposome, the other starting from health effects. Novel bioinformatics tools, based on systems immunology and machine learning, will be used to integrate and analyze these large datasets to identify immune fingerprints that reflect a person's lifetime exposome or that are early predictors of disease. This will allow researchers, policymakers, and clinicians to grasp the impact of the exposome on the immune system at the level of individuals and populations.

9.
Ann Work Expo Health ; 66(4): 543-549, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35182067

RESUMO

In this article, we have responded to the key statements in the article by Koivisto et al. (2022) that were incorrect and considered to be a biased critique on a subset of the exposure models used in Europe (i.e. ART and Stoffenmanager®) used for regulatory exposure assessment. We welcome scientific discussions on exposure modelling (as was done during the ISES Europe workshop) and criticism based on scientific evidence to contribute to the advancement of occupational exposure estimation tools. The tiered approach to risk assessment allows various exposure assessment models from screening tools (control/hazard banding) through to higher-tiered approaches. There is a place for every type of model, but we do need to recognize the cost and data requirements of highly bespoke assessments. That is why model developers have taken pragmatic approaches to develop tools for exposure assessments based on imperfect data. We encourage Koivisto et al. to focus on further scientifically robust work to develop mass-balance models and by independent external validations studies, compare these models with alternative model tools such as ART and Stoffenmanager®.


Assuntos
Exposição Ocupacional , Europa (Continente) , Humanos , Medição de Risco
10.
Artigo em Inglês | MEDLINE | ID: mdl-34202035

RESUMO

We provide a narrative review on published peer-reviewed scientific literature reporting comparisons of personal samplers in workplace settings published between 2004 and 2020. Search terms were developed for Web of Science and PubMed bibliographic databases. The retrieved studies were then screened for relevance, with those studies meeting the inclusion criteria being taken forward to data extraction (22 studies). The inhalable fraction was the most common fraction assessed with the IOM sampler being the most studied sampler. The most common workplace environment where samplers had been compared was that where metals/metalloids were present. The requirements of EN13205 standard (Workplace exposure. Assessment of sampler performance for measurement of airborne particle concentrations) have also been considered, with these requirements not currently being met, or at least referred to, in the included published literature. A number of conclusions have been drawn from this narrative review. For studies that reported correction factors, no discernible trends could be identified. Correction factors also varied between samplers and settings, with correction factors varying from 0.67 for Button/IOM in agriculture settings to a correction factor of 4.2 for the closed face cassette/IOM samplers in aluminium smelters. The need for more detailed and informative data sharing from authors is highlighted, providing more context to both the sampling strategy and methodology, as well as the data analysis. It is recommended that the requirements of EN13205 are taken into account when designing sampler comparison studies at the workplace and that these are also reported. It is also considered that there is a need for a clear standardized workplace sampler comparison protocol to be developed, which can be used by the research and occupational hygiene community to allow more robust and transparent assessment of aerosol samplers and better-quality evidence for use by industrial hygienists, epidemiologists, and occupational safety specialists alike.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Aerossóis/análise , Poluentes Ocupacionais do Ar/análise , Poeira , Monitoramento Ambiental , Exposição por Inalação/análise , Exposição Ocupacional/análise , Tamanho da Partícula , Local de Trabalho
11.
Open Res Eur ; 1: 72, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645135

RESUMO

Background: The Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation requires the establishment of Conditions of Use (CoU) for all exposure scenarios to ensure good communication of safe working practices. Setting CoU requires the risk assessment of all relevant Contributing Scenarios (CSs) in the exposure scenario. A new CS has to be created whenever an Operational Condition (OC) is changed, resulting in an excessive number of exposure assessments. An efficient solution is to quantify OC concentrations and to identify reasonable worst-case scenarios with probabilistic exposure modeling. Methods: Here, we appoint CoU for powder pouring during the industrial manufacturing of a paint batch by quantifying OC exposure levels and exposure determinants. The quantification was performed by using stationary measurements and a probabilistic Near-Field/Far-Field (NF/FF) exposure model. Work shift and OC concentration levels were quantified for pouring TiO 2 from big bags and small bags, pouring Micro Mica from small bags, and cleaning. The impact of exposure determinants on NF concentration level was quantified by (1) assessing exposure determinants correlation with the NF exposure level and (2) by performing simulations with different OCs. Results: Emission rate, air mixing between NF and FF and local ventilation were the most relevant exposure determinants affecting NF concentrations. Potentially risky OCs were identified by performing Reasonable Worst Case (RWC) simulations and by comparing the exposure 95 th percentile distribution with 10% of the occupational exposure limit value (OELV). The CS was shown safe except in RWC scenario (ventilation rate from 0.4 to 1.6 1/h, 100 m 3 room, no local ventilation, and NF ventilation of 1.6 m 3/min). Conclusions: The CoU assessment was considered to comply with European Chemicals Agency (ECHA) legislation and EN 689 exposure assessment strategy for testing compliance with OEL values. One RWC scenario would require measurements since the exposure level was 12.5% of the OELV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA