Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(24): e2313252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445772

RESUMO

The development of random lasing (RL) with predictable and controlled properties is an important step to make these cheap optical sources stable and reliable. However, the design of tailored RL characteristics (emission energy, threshold, number of modes) is only obtained with complex photonic structures, while the simplest optical configurations able to tune the RL are still a challenge. This work demonstrates the tuning of the RL characteristics in spin-coated and inkjet-printed tin-based perovskites integrated into a vertical cavity with low quality factor. When the cavity mode is resonant with the photoluminescence (PL) peak energy, standard vertical lasing is observed. More importantly, single mode RL operation with the lowest threshold and a quality factor as high as 1 000 (twenty times the quality factor of the resonator) is obtained if the cavity mode lies above the PL peak energy due to higher gain. These results can have important technological implications toward the development of low-cost RL sources without chaotic behavior.

2.
ACS Energy Lett ; 8(11): 4885-4887, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37969253

RESUMO

For the first time, large-area, flexible organic-inorganic tin perovskite solar modules are fabricated by means of an industry-compatible and scalable blade-coating technique. An 8-cell interconnected mini module with dimensions of 25 cm2 (active area = 8 × 1.5 cm2) reached 5.7% power conversion efficiency under 1000 W/m2 (AM 1.5G) and 9.4% under 2000 lx (white-LED).

3.
Nanoscale ; 15(23): 9985-9992, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37232241

RESUMO

Inkjet printing electronics is a growing market that reached 7.8 billion USD in 2020 and that is expected to grow to ∼23 billion USD by 2026, driven by applications like displays, photovoltaics, lighting, and radiofrequency identification. Incorporating two-dimensional (2D) materials into this technology could further enhance the properties of the existing devices and/or circuits, as well as enable the development of new concept applications. Along these lines, here we report an easy and cheap process to synthesize inks made of multilayer hexagonal boron nitride (h-BN)-an insulating 2D layered material-by the liquid-phase exfoliation method and use them to fabricate memristors. The devices exhibit multiple stochastic phenomena that are very attractive for use as entropy sources in electronic circuits for data encryption (physical unclonable functions [PUFs], true random number generators [TRNGs]), such as: (i) a very disperse initial resistance and dielectric breakdown voltage, (ii) volatile unipolar and non-volatile bipolar resistive switching (RS) with a high cycle-to-cycle variability of the state resistances, and (iii) random telegraph noise (RTN) current fluctuations. The clue for the observation of these stochastic phenomena resides on the unpredictable nature of the device structure derived from the inkjet printing process (i.e., thickness fluctuations, random flake orientations), which allows fabricating electronic devices with different electronic properties. The easy-to-make and cheap memristors here developed are ideal to encrypt the information produced by multiple types of objects and/or products, and the versatility of the inkjet printing method, which allows effortless deposition on any substrate, makes our devices especially attractive for flexible and wearable devices within the internet-of-things.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Entropia , Tinta
4.
ACS Energy Lett ; 7(10): 3653-3655, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277130

RESUMO

Lead-free PEA2SnI4-based perovskite LEDs are successfully inkjet-printed on rigid and flexible substrates. Red-emitting devices (λmax = 633 nm) exhibit, under ambient conditions, a maximum external quantum efficiency (EQEmax) of 1% with a related brightness of 30 cd/m2 at 10 mA/cm2.

5.
ACS Appl Mater Interfaces ; 11(26): 23659-23666, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180626

RESUMO

Low-power, high-performance metal-insulator-metal (MIM) non-volatile resistive memories based on HfO2 high- k dielectric are fabricated using a drop-on-demand inkjet printing technique as a low-cost and eco-friendly method. The characteristics of resistive switching of Pt (bottom)/HfO2/Ag (top) stacks on Si/SiO2 substrates are investigated in order to study the bottom electrode's interaction with the HfO2 dielectric layer and the resulting effects on resistive switching. The devices show low Set and Reset voltages, high ON/OFF current ratio, and relatively low switching current (∼1 µA), which are comparable to the characteristics of current commercial CMOS memories. In order to understand the resistive switching mechanism, direct structural observation is carried out by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM) on cross-sectioned samples prepared by focused ion beam (FIB). In addition, electron energy loss spectroscopy (EELS) inspections discard a silver electro-migration effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA