Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Acta Neuropathol ; 137(3): 379-395, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30721408

RESUMO

Despite decades of research, accurate diagnosis of Parkinson's disease remains a challenge, and disease-modifying treatments are still lacking. Research into the early (presymptomatic) stages of Parkinson's disease and the discovery of novel biomarkers is of utmost importance to reduce this burden and to come to a more accurate diagnosis at the very onset of the disease. Many have speculated that non-motor symptoms could provide a breakthrough in the quest for early biomarkers of Parkinson's disease, including the visual disturbances and retinal abnormalities that are seen in the majority of Parkinson's disease patients. An expanding number of clinical studies have investigated the use of in vivo assessments of retinal structure, electrophysiological function, and vision-driven tasks as novel means for identifying patients at risk that need further neurological examination and for longitudinal follow-up of disease progression in Parkinson's disease patients. Often, the results of these studies have been interpreted in relation to α-synuclein deposits and dopamine deficiency in the retina, mirroring the defining pathological features of Parkinson's disease in the brain. To better understand the visual defects seen in Parkinson's disease patients and to propel the use of retinal changes as biomarkers for Parkinson's disease, however, more conclusive neuropathological evidence for the presence of retinal α-synuclein aggregates, and its relation to the cerebral α-synuclein burden, is urgently needed. This review provides a comprehensive and critical overview of the research conducted to unveil α-synuclein aggregates in the retina of Parkinson's disease patients and animal models, and thereby aims to aid the ongoing discussion about the potential use of the retinal changes and/or visual symptoms as biomarkers for Parkinson's disease.


Assuntos
Doença de Parkinson/patologia , Retina/patologia , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Humanos
2.
Front Neurosci ; 15: 726476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557068

RESUMO

Despite decades of research, disease-modifying treatments of Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, remain out of reach. One of the reasons for this treatment gap is the incomplete understanding of how misfolded alpha-synuclein (α-syn) contributes to PD pathology. The retina, as an integral part of the central nervous system, recapitulates the PD disease processes that are typically seen in the brain, and retinal manifestations have emerged as prodromal symptoms of the disease. The timeline of PD manifestations in the visual system, however, is not fully elucidated and the underlying mechanisms are obscure. This highlights the need for new studies investigating retinal pathology, in order to propel its use as PD biomarker, and to develop validated research models to investigate PD pathogenesis. The present study pioneers in characterizing the retina of the Thy1-h[A30P]α-syn PD transgenic mouse model. We demonstrate widespread α-syn accumulation in the inner retina of these mice, of which a proportion is phosphorylated yet not aggregated. This α-syn expression coincides with inner retinal atrophy due to postsynaptic degeneration. We also reveal abnormal retinal electrophysiological responses. Absence of selective loss of melanopsin retinal ganglion cells or dopaminergic amacrine cells and inflammation indicates that the retinal manifestations in these transgenic mice diverge from their brain phenotype, and questions the specific cellular or molecular alterations that underlie retinal pathology in this PD mouse model. Nevertheless, the observed α-syn accumulation, synapse loss and functional deficits suggest that the Thy1-h[A30P]α-syn retina mimics some of the features of prodromal PD, and thus may provide a window to monitor and study the preclinical/prodromal stages of PD, PD-associated retinal disease processes, as well as aid in retinal biomarker discovery and validation.

3.
Acta Neuropathol Commun ; 9(1): 6, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407903

RESUMO

In this study, we report the results of a comprehensive phenotyping of the retina of the AppNL-G-F mouse. We demonstrate that soluble Aß accumulation is present in the retina of these mice early in life and progresses to Aß plaque formation by midlife. This rising Aß burden coincides with local microglia reactivity, astrogliosis, and abnormalities in retinal vein morphology. Electrophysiological recordings revealed signs of neuronal dysfunction yet no overt neurodegeneration was observed and visual performance outcomes were unaffected in the AppNL-G-F mouse. Furthermore, we show that hyperspectral imaging can be used to quantify retinal Aß, underscoring its potential as a biomarker for AD diagnosis and monitoring. These findings suggest that the AppNL-G-F retina mimics the early, preclinical stages of AD, and, together with retinal imaging techniques, offers unique opportunities for drug discovery and fundamental research into preclinical AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Retina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Progressão da Doença , Eletrorretinografia , Gliose/metabolismo , Gliose/patologia , Imageamento Hiperespectral , Camundongos , Camundongos Transgênicos , Microglia/patologia , Microglia/fisiologia , Fragmentos de Peptídeos/metabolismo , Fenótipo , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia , Retina/patologia , Retina/fisiopatologia , Neurônios Retinianos/fisiologia , Veia Retiniana/patologia , Tomografia de Coerência Óptica
4.
Front Aging Neurosci ; 12: 614587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519421

RESUMO

Although very different in etiology and symptoms, numerous neurodegenerative diseases can be classified as proteinopathies. More so, evidence indicates that the key misfolded proteins at the basis of different neuropathies might share common mechanisms of propagation. As such, the prion-like spreading of protein aggregates through the neural network is subject of intensive research focus and requires adequate models. Here, we made use of the well-defined architecture and large accessibility of the visual system, of which the retinotopic connections represent a simple route of anterograde signaling and an elegant model to investigate transsynaptic, prion-like spreading. In two independent studies, uptake and seeding of alpha-synuclein and tau were examined after intravitreal injection of preformed fibrils. However, extracellular matrix components in the vitreous space and at the vitreoretinal surface appeared to act as a barrier for the entry of both fibrils into the retina. These results show that further experimental refinement is needed to fully realize the potential of the visual system as a model for studying the molecular and cellular mechanisms of anterograde, transsynaptic spreading of prion-like proteins.

5.
Brain Struct Funct ; 223(2): 545-567, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29189905

RESUMO

Due to the lack of axonal regeneration, age-related deterioration in the central nervous system (CNS) poses a significant burden on the wellbeing of a growing number of elderly. To overcome this regenerative failure and to improve the patient's life quality, the search for novel regenerative treatment strategies requires valuable (animal) models and techniques. As an extension of the CNS, the retinofugal system, consisting of retinal ganglion cells that send their axons along the optic nerve to the visual brain areas, has importantly contributed to the current knowledge on mechanisms underlying the restricted regenerative capacities and to the development of novel strategies to enhance axonal regeneration. It provides an extensively used research tool, not only in amniote vertebrates including rodents, but also in anamniote vertebrates, such as zebrafish. Indeed, the latter show robust regeneration capacities, thereby providing insights into the factors that contribute to axonal regrowth and proper guidance, complementing studies in mammals. This review provides an integrative and critical overview of the classical and state-of-the-art models and methods that have been employed in the retinofugal system to advance our knowledge on the signaling pathways underlying the restricted versus robust axonal regeneration in rodents and zebrafish, respectively. In vitro, ex vivo and in vivo models and techniques to improve the visualization and analysis of regenerating axons are summarized. As such, the retinofugal system is presented as a valuable model to further facilitate research on axonal regeneration and to open novel therapeutic avenues for CNS pathologies.


Assuntos
Modelos Animais , Regeneração Nervosa/fisiologia , Vias Visuais/fisiologia , Animais , Humanos , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , Vertebrados/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA