RESUMO
Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. BC is highly heterogeneous with various phenotypic expressions. The overexpression of HER2 is responsible for 15-30% of all invasive BC and is strongly associated with malignant behaviours, poor prognosis and decline in overall survival. Molecular imaging offers advantages over conventional imaging modalities, as it provides more sensitive and specific detection of tumours, as these techniques measure the biological and physiological processes at the cellular level to visualise the disease. Early detection and diagnosis of BC is crucial to improving clinical outcomes and prognosis. While HER2-specific antibodies and nanobodies may improve the sensitivity and specificity of molecular imaging, the radioisotope conjugation process may interfere with and may compromise their binding functionalities. Aptamers are single-stranded oligonucleotides capable of targeting biomarkers with remarkable binding specificity and affinity. Aptamers can be functionalised with radioisotopes without compromising target specificity. The attachment of different radioisotopes can determine the aptamer's functionality in the treatment of HER2(+) BC. Several HER2 aptamers and investigations of them have been described and evaluated in this paper. We also provide recommendations for future studies with HER2 aptamers to target HER2(+) BC.
Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Anticorpos de Domínio Único/uso terapêutico , Feminino , Humanos , PrognósticoRESUMO
A key challenge in developing an anticancer aptamer is to efficiently determine the selectivity and specificity of the developed aptamer to the target protein. Due to its several advantages over monoclonal antibodies, aptamer development has gained enormous popularity among cancer researchers. Systematic evolution of ligands by exponential enrichment (SELEX) is the most common method of developing aptamers specific for proteins of interest. Following SELEX, a quick and efficient binding assay accelerates the process of identification, confirming the selectivity and specificity of the aptamer. This paper explains a step-by-step flow cytometric-based binding assay of an aptamer specific for epithelial cellular adhesion molecule (EpCAM). The transmembrane glycoprotein EpCAM is overexpressed in most carcinomas and plays roles in cancer initiation, progression, and metastasis. Therefore, it is a valuable candidate for targeted drug delivery to tumors. To evaluate the selectivity and specificity of the aptamer to the membrane-bound EpCAM, EpCAM-positive and -negative cells are required. Additionally, a non-binding EpCAM aptamer with a similar length and 2-dimensional (2D) structure to the EpCAM-binding aptamer is required. The binding assay includes different buffers (blocking buffer, wash buffer, incubation buffer, and FACS buffer) and incubation steps. The aptamer is incubated with the cell lines. Following the incubation and washing steps, the cells will be evaluated using a sensitive flow cytometry assay. Analysis of the results shows the binding of the EpCAM-specific aptamer to EpCAM-positive cells and not the EpCAM-negative cells. In EpCAM-positive cells, this is depicted as a band shift in the binding of the EpCAM aptamer to the right compared to the non-binding aptamer control. In EpCAM-negative cells, the corresponding bands of EpCAM-binding and -non-binding aptamers overlap. This demonstrates the selectivity and specificity of the EpCAM aptamer. While this protocol is focused on the EpCAM aptamer, the protocol is applicable to other published aptamers.
Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Anticorpos Monoclonais/metabolismo , Aptâmeros de Nucleotídeos/química , Molécula de Adesão da Célula Epitelial/metabolismo , Citometria de Fluxo , Humanos , Ligantes , Proteínas de Membrana/metabolismo , Ligação Proteica , Técnica de Seleção de AptâmerosRESUMO
Cancer has a high incidence and mortality rate worldwide, which continues to grow as millions of people are diagnosed annually. Metastatic disease caused by cancer is largely responsible for the mortality rates, thus early detection of metastatic tumours can improve prognosis. However, a large number of patients will also present with micrometastasis tumours which are often missed, as conventional medical imaging modalities are unable to detect micrometastases due to the lack of specificity and sensitivity. Recent advances in radiochemistry and the development of nucleic acid based targeting molecules, have led to the development of novel agents for use in cancer diagnostics. Monoclonal antibodies may also be used, however, they have inherent issues, such as toxicity, cost, unspecified binding and their clinical use can be controversial. Aptamers are a class of single-stranded RNA or DNA ligands with high specificity, binding affinity and selectivity for a target, which makes them promising for molecular biomarker imaging. Aptamers are presented as being a superior choice over antibodies because of high binding affinity and pH stability, amongst other factors. A number of aptamers directed to cancer cell markers (breast, lung, colon, glioblastoma, melanoma) have been radiolabelled and characterised to date. Further work is ongoing to develop these for clinical applications.