Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(4): e1010943, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068114

RESUMO

Influenza A virus exhibits high rates of replicative failure due to a variety of genetic defects. Most influenza virions cannot, when acting as individual particles, complete the entire viral life cycle. Nevertheless influenza is incredibly successful in the suppression of innate immune detection and the production of interferons, remaining undetected in >99% of cells in tissue-culture models of infection. Notably, the same variation that leads to replication failure can, by chance, inactivate the major innate immune antagonist in influenza A virus, NS1. What explains the observed rarity of interferon production in spite of the frequent loss of this, critical, antagonist? By studying how genetic and phenotypic variation in a viral population lacking NS1 correlates with interferon production, we have built a model of the "worst-case" failure from an improved understanding of the steps at which NS1 acts in the viral life cycle to prevent the triggering of an innate immune response. In doing so, we find that NS1 prevents the detection of de novo innate immune ligands, defective viral genomes, and viral export from the nucleus, although only generation of de novo ligands appears absolutely required for enhanced detection of virus in the absence of NS1. Due to this, the highest frequency of interferon production we observe (97% of infected cells) requires a high level of replication in the presence of defective viral genomes with NS1 bearing an inactivating mutation that does not impact its partner encoded on the same segment, NEP. This is incredibly unlikely to occur given the standard variation found within a viral population, and would generally require direct, artificial, intervention to achieve at an appreciable rate. Thus from our study, we procure at least a partial explanation for the seeming contradiction between high rates of replicative failure and the rarity of the interferon response to influenza infection.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Interferons/genética , Influenza Humana/genética , Proteínas não Estruturais Virais/genética , Vírus da Influenza A/genética , Imunidade Inata , Replicação Viral/genética
2.
Proc Natl Acad Sci U S A ; 115(32): 8161-8166, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038027

RESUMO

Copper is an essential cofactor of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Inherited loss-of-function mutations in several genes encoding proteins required for copper delivery to CcO result in diminished CcO activity and severe pathologic conditions in affected infants. Copper supplementation restores CcO function in patient cells with mutations in two of these genes, COA6 and SCO2, suggesting a potential therapeutic approach. However, direct copper supplementation has not been therapeutically effective in human patients, underscoring the need to identify highly efficient copper transporting pharmacological agents. By using a candidate-based approach, we identified an investigational anticancer drug, elesclomol (ES), that rescues respiratory defects of COA6-deficient yeast cells by increasing mitochondrial copper content and restoring CcO activity. ES also rescues respiratory defects in other yeast mutants of copper metabolism, suggesting a broader applicability. Low nanomolar concentrations of ES reinstate copper-containing subunits of CcO in a zebrafish model of copper deficiency and in a series of copper-deficient mammalian cells, including those derived from a patient with SCO2 mutations. These findings reveal that ES can restore intracellular copper homeostasis by mimicking the function of missing transporters and chaperones of copper, and may have potential in treating human disorders of copper metabolism.


Assuntos
Antineoplásicos/farmacologia , Cobre/deficiência , Drogas em Investigação/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hidrazinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Transporte Biológico/genética , Proteínas de Transporte/genética , Linhagem Celular , Coenzimas/deficiência , Cobre/uso terapêutico , Transportador de Cobre 1 , Suplementos Nutricionais , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Drogas em Investigação/uso terapêutico , Fibroblastos , Humanos , Hidrazinas/uso terapêutico , Proteínas de Membrana Transportadoras/genética , Erros Inatos do Metabolismo/tratamento farmacológico , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ratos , Saccharomyces cerevisiae , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Genetics ; 221(4)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35666203

RESUMO

Cytochrome c oxidase (CcO) is a multimeric copper-containing enzyme of the mitochondrial respiratory chain that powers cellular energy production. The two core subunits of cytochrome c oxidase, Cox1 and Cox2, harbor the catalytic CuB and CuA sites, respectively. Biogenesis of each copper site occurs separately and requires multiple proteins that constitute the mitochondrial copper delivery pathway. Currently, the identity of all the members of the pathway is not known, though several evolutionarily conserved twin CX9C motif-containing proteins have been implicated in this process. Here, we performed a targeted yeast suppressor screen that placed Coa4, a twin CX9C motif-containing protein, in the copper delivery pathway to the Cox1 subunit. Specifically, we show that overexpression of Cox11, a copper metallochaperone required for the formation of CuB site, can restore Cox1 abundance, cytochrome c oxidase assembly, and mitochondrial respiration in coa4Δ cells. This rescue is dependent on the copper-coordinating cysteines of Cox11. The abundance of Coa4 and Cox11 in mitochondria is reciprocally regulated, further linking Coa4 to the CuB site biogenesis. Additionally, we find that coa4Δ cells have reduced levels of copper and exogenous copper supplementation can partially ameliorate its respiratory-deficient phenotype, a finding that connects Coa4 to cellular copper homeostasis. Finally, we demonstrate that human COA4 can replace the function of yeast Coa4 indicating its evolutionarily conserved role. Our work provides genetic evidences for the role of Coa4 in the copper delivery pathway to the CuB site of cytochrome c oxidase.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Saccharomyces cerevisiae , Cobre , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA