Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(13): 5642-5652, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35368112

RESUMO

BACKGROUND: Sensory biometrics provide advantages for consumer tasting by quantifying physiological changes and the emotional response from participants, removing variability associated with self-reported responses. The present study aimed to measure consumers' emotional and physiological responses towards different commercial yoghurts, including dairy and plant-based yoghurts. The physiochemical properties of these products were also measured and linked with consumer responses. RESULTS: Six samples (Control, Coconut, Soy, Berry, Cookies and Drinkable) were evaluated for overall liking by n = 62 consumers using a nine-point hedonic scale. Videos from participants were recorded using the Bio-Sensory application during tasting to assess emotions and heart rate. Physicochemical parameters Brix, pH, density, color (L, a and b), firmness and near-infrared (NIR) spectroscopy were also measured. Principal component analysis and a correlation matrix were used to assess relationships between the measured parameters. Heart rate was positively related to firmness, yaw head movement and overall liking, which were further associated with the Cookies sample. Two machine learning regression models were developed using (i) NIR absorbance values as inputs to predict the physicochemical parameters (Model 1) and (ii) the outputs from Model 1 as inputs to predict consumers overall liking (Model 2). Both models presented very high accuracy (Model 1: R = 0.98; Model 2: R = 0.99). CONCLUSION: The presented methods were shown to be highly accurate and reliable with respect to their potential use by the industry to assess yoghurt quality traits and acceptability. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Preferências Alimentares , Iogurte , Comportamento do Consumidor , Tecnologia Digital , Preferências Alimentares/psicologia , Humanos , Paladar
2.
Food Sci Nutr ; 12(6): 4063-4075, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873484

RESUMO

Consumer acceptability of beers is influenced by product formulation and processing conditions, which impart unique sensory profiles. This study used multivariate techniques to evaluate at-home consumer sensory acceptability of six commercial beers considering their style, fermentation type, and chemical composition. Samples included top-fermented beers (American India Pale Ale and Stout) and bottom-fermented beers (Pilsner, zero-alcohol Pilsner, Vienna Lager, and Munich Dunkel). Beer consumers (n = 50) conducted sensory hedonic, check-all-that-apply (CATA) and just-about-right (JAR) tests. Chemometric variables included iso-alpha-acids, hordenine, and volatile aromatic compounds, quantified by chromatographic methods, whereas bitterness units (IBU) were determined spectrophotometrically. Lager beers had higher acceptability than top-fermented beer (p < .05) for all attributes. Light-colored beers and medium-height foams had the highest liking scores for visual sensory attributes. Higher concentrations of bitter-tasting molecules, hordenine, and acidity decreased the liking scores of top-fermented (Ale) beers, as a sensory penalty analysis suggested. In contrast, the most favored beers (Pilsners and Munich Dunkel) contained higher fusel alcohol esters linked to fruity aromatic notes. Although a low conversion rate of fatty acids into fruity esters was noted in nonalcoholic Pilsner, its overall liking score was not statistically different from the alcoholic version. However, consumers perceived the nonalcoholic Pilsner as less bitter than its alcoholic counterpart even when IBUs were nonsignificantly different. This study emphasized the significance of understanding beer chemometrics to comprehend consumer acceptability, highlighting the crucial role of bitter molecules. Hence, hordenine, acidity, and volatile contents provided additional and valuable insights into consumer preferences.

3.
Foods ; 8(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756920

RESUMO

Quality control, mainly focused on the assessment of bubble and foam-related parameters, is critical in carbonated beverages, due to their relationship with the chemical components as well as their influence on sensory characteristics such as aroma release, mouthfeel, and perception of tastes and aromas. Consumer assessment and acceptability of carbonated beverages are mainly based on carbonation, foam, and bubbles, as a flat carbonated beverage is usually perceived as low quality. This review focuses on three beverages: beer, sparkling water, and sparkling wine. It explains the characteristics of foam and bubble formation, and the traditional methods, as well as emerging technologies based on robotics and computer vision, to assess bubble and foam-related parameters. Furthermore, it explores the most common methods and the use of advanced techniques using an artificial intelligence approach to assess sensory descriptors both for descriptive analysis and consumers' acceptability. Emerging technologies, based on the combination of robotics, computer vision, and machine learning as an approach to artificial intelligence, have been developed and applied for the assessment of beer and, to a lesser extent, sparkling wine. This, has the objective of assessing the final products quality using more reliable, accurate, affordable, and less time-consuming methods. However, despite carbonated water being an important product, due to its increasing consumption, more research needs to focus on exploring more efficient, repeatable, and accurate methods to assess carbonation and bubble size, distribution and dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA