Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 166(1): 140-51, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27264606

RESUMO

Caloric restriction (CR) extends the lifespan of flies, worms, and yeast by counteracting age-related oxidation of H2O2-scavenging peroxiredoxins (Prxs). Here, we show that increased dosage of the major cytosolic Prx in yeast, Tsa1, extends lifespan in an Hsp70 chaperone-dependent and CR-independent manner without increasing H2O2 scavenging or genome stability. We found that Tsa1 and Hsp70 physically interact and that hyperoxidation of Tsa1 by H2O2 is required for the recruitment of the Hsp70 chaperones and the Hsp104 disaggregase to misfolded and aggregated proteins during aging, but not heat stress. Tsa1 counteracted the accumulation of ubiquitinated aggregates during aging and the reduction of hyperoxidized Tsa1 by sulfiredoxin facilitated clearance of H2O2-generated aggregates. The data reveal a conceptually new role for H2O2 signaling in proteostasis and lifespan control and shed new light on the selective benefits endowed to eukaryotic peroxiredoxins by their reversible hyperoxidation.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Peróxido de Hidrogênio/metabolismo , Longevidade , Peroxidases/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Restrição Calórica , Instabilidade Genômica , Proteínas de Choque Térmico/metabolismo , Humanos , Oxirredução , Agregados Proteicos , Saccharomyces cerevisiae/citologia , Transdução de Sinais
2.
PLoS Genet ; 17(1): e1008951, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428620

RESUMO

70 kDa heat shock proteins (Hsp70) are essential chaperones of the protein quality control network; vital for cellular fitness and longevity. The four cytosolic Hsp70's in yeast, Ssa1-4, are thought to be functionally redundant but the absence of Ssa1 and Ssa2 causes a severe reduction in cellular reproduction and accelerates replicative aging. In our efforts to identify which Hsp70 activities are most important for longevity assurance, we systematically investigated the capacity of Ssa4 to carry out the different activities performed by Ssa1/2 by overproducing Ssa4 in cells lacking these Hsp70 chaperones. We found that Ssa4, when overproduced in cells lacking Ssa1/2, rescued growth, mitigated aggregate formation, restored spatial deposition of aggregates into protein inclusions, and promoted protein degradation. In contrast, Ssa4 overproduction in the Hsp70 deficient cells failed to restore the recruitment of the disaggregase Hsp104 to misfolded/aggregated proteins, to fully restore clearance of protein aggregates, and to bring back the formation of the nucleolus-associated aggregation compartment. Exchanging the nucleotide-binding domain of Ssa4 with that of Ssa1 suppressed this 'defect' of Ssa4. Interestingly, Ssa4 overproduction extended the short lifespan of ssa1Δ ssa2Δ mutant cells to a lifespan comparable to, or even longer than, wild type cells, demonstrating that Hsp104-dependent aggregate clearance is not a prerequisite for longevity assurance in yeast.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Longevidade/genética , Proteínas de Saccharomyces cerevisiae/genética , Citosol/metabolismo , Chaperonas Moleculares/genética , Proteínas Mutantes/genética , Mutação/genética , Dobramento de Proteína , Saccharomyces cerevisiae/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-33593835

RESUMO

Chlamydia trachomatis is a strict intracellular bacterium that causes sexually transmitted infections and eye infections that can lead to life-long sequelae. Treatment options are limited to broad-spectrum antibiotics that disturb the commensal flora and contribute to selection of antibiotic-resistant bacteria. Hence, development of novel drugs that specifically target C. trachomatis would be beneficial. 2-pyridone amides are potent and specific inhibitors of Chlamydia infectivity. The first generation compound KSK120, inhibits the developmental cycle of Chlamydia resulting in reduced infectivity of progeny bacteria. Here, we show that the improved, highly potent second-generation 2-pyridone amide KSK213 allowed normal growth and development of C. trachomatis and the effect was only observable upon re-infection of new cells. Progeny elementary bodies (EBs) produced in the presence of KSK213 were unable to activate transcription of essential genes in early development and did not differentiate into the replicative form, the reticulate body (RB). The effect was specific to C. trachomatis since KSK213 was inactive in the closely related animal pathogen C. muridarum and in C. caviae The molecular target of KSK213 may thus be different in C. trachomatis or non-essential in C. muridarum and C. caviae Resistance to KSK213 was mediated by a combination of amino acid substitutions in both DEAD/DEAH RNA helicase and RNAse III, which may indicate inhibition of the transcriptional machinery as the mode of action. 2-pyridone amides provide a novel antibacterial strategy and starting points for development of highly specific drugs for C. trachomatis infections.

4.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743189

RESUMO

Chlamydia trachomatis causes the most common sexually transmitted bacterial infection and trachoma, an eye infection. Untreated infections can lead to sequelae, such as infertility and ectopic pregnancy in women and blindness. We previously enhanced the antichlamydial activity of the fluoroquinolone ciprofloxacin by grafting a metal chelating moiety onto it. In the present study, we pursued this pharmacomodulation and obtained nanomolar active molecules (EC50) against this pathogen. This gain in activity prompted us to evaluate the antibacterial activity of this family of molecules against other pathogenic bacteria, such as Neisseria gonorrhoeae and bacteria from the ESKAPE group. The results show that the novel molecules have selectively improved activity against C. trachomatis and demonstrate how the antichlamydial effect of fluoroquinolones can be enhanced.


Assuntos
Anti-Infecciosos , Infecções por Chlamydia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Infecções por Chlamydia/tratamento farmacológico , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis , Feminino , Fluoroquinolonas/farmacologia , Humanos , Gravidez
5.
Org Biomol Chem ; 19(44): 9758-9772, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34730163

RESUMO

We herein present the synthesis of diversely functionalized pyrimidine fused thiazolino-2-pyridones via K2S2O8-mediated oxidative coupling of 6-amino-7-(aminomethyl)-thiazolino-2-pyridones with aldehydes. The developed protocol is mild, has wide substrate scope, and does not require transition metal catalyst or base. Some of the synthesized compounds have an ability to inhibit the formation of Amyloid-ß fibrils associated with Alzheimer's disease, while others bind to mature amyloid-ß and α-synuclein fibrils.


Assuntos
Aldeídos
6.
J Cell Sci ; 126(Pt 1): 339-47, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23108670

RESUMO

The constant shedding and renewal of epithelial cells maintain the protection of epithelial barriers. Interference with the processes of host cell-cycle regulation and barrier integrity permits the bacterial pathogen Neisseria gonorrhoeae to effectively colonize and invade epithelial cells. Here, we show that a gonococcal infection causes DNA damage in human non-tumor vaginal VK2/E6E7 cells with an increase of 700 DNA strand breaks per cell per hour as detected by an alkaline DNA unwinding assay. Infected cells exhibited elevated levels of DNA double-strand breaks, as indicated by a more than 50% increase in cells expressing DNA damage-response protein 53BP1-positive foci that co-localized with phosphorylated histone H2AX (γH2AX). Furthermore, infected cells abolished their expression of the tumor protein p53 and induced an increase in the expression of cyclin-dependent kinase inhibitors p21 and p27 to 2.6-fold and 4.2-fold of controls, respectively. As shown by live-cell microscopy, flow cytometry assays, and BrdU incorporation assays, gonococcal infection slowed the host cell-cycle progression mainly by impairing progression through the G2 phase. Our findings show new cellular players that are involved in the control of the human cell cycle during gonococcal infection and the potential of bacteria to cause cellular abnormalities.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Neisseria gonorrhoeae/patogenicidade , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Citometria de Fluxo , Humanos , Neisseria gonorrhoeae/fisiologia , Antígeno Nuclear de Célula em Proliferação/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteína Supressora de Tumor p53/genética
7.
Biochem Biophys Res Commun ; 430(1): 54-9, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23159632

RESUMO

Pancreatic ß-cells secrete insulin in response to various stimuli to control blood glucose levels. This insulin release is the result of a complex interplay between signaling, membrane potential and intracellular calcium levels. Various nutritional and hormonal factors are involved in regulating this process. N-Acyl taurines are a group of fatty acids which are amidated (or conjugated) to taurine and little is known about their physiological functions. In this study, treatment of pancreatic ß-cell lines (HIT-T15) and rat islet cell lines (INS-1) with N-acyl taurines (N-arachidonoyl taurine and N-oleoyl taurine), induced a high frequency of calcium oscillations in these cells. Treatment with N-arachidonoyl taurine and N-oleoyl taurine also resulted in a significant increase in insulin secretion from pancreatic ß-cell lines as determined by insulin release assay and immunofluorescence (p<0.05). Our data also show that the transient receptor potential vanilloid 1 (TRPV1) channel is involved in insulin secretion in response to N-arachidonoyl taurine and N-oleoyl taurine treatment. However our data also suggest that receptors other than TRPV1 are involved in the insulin secretion response to treatment with N-oleoyl taurine.


Assuntos
Ácidos Araquidônicos/farmacologia , Cálcio/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Ácidos Oleicos/farmacologia , Taurina/análogos & derivados , Animais , Linhagem Celular , Cricetinae , Citoplasma/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ratos , Canais de Cátion TRPV/metabolismo , Taurina/farmacologia
8.
PLoS One ; 14(11): e0224324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31697687

RESUMO

The ability to introduce targeted genetic modifications in microbial genomes has revolutionized our ability to study the role and mode of action of individual bacterial virulence factors. Although the fastidious lifestyle of obligate intracellular bacterial pathogens poses a technical challenge to such manipulations, the last decade has produced significant advances in our ability to conduct molecular genetic analysis in Chlamydia trachomatis, a major bacterial agent of infertility and blindness. Similar approaches have not been established for the closely related veterinary Chlamydia spp., which cause significant economic damage, as well as rare but potentially life-threatening infections in humans. Here we demonstrate the feasibility of conducting site-specific mutagenesis for disrupting virulence genes in C. caviae, an agent of guinea pig inclusion conjunctivitis that was recently identified as a zoonotic agent in cases of severe community-acquired pneumonia. Using this approach, we generated C. caviae mutants deficient for the secreted effector proteins IncA and SinC. We demonstrate that C. caviae IncA plays a role in mediating fusion of the bacteria-containing vacuoles inhabited by C. caviae. Moreover, using a chicken embryo infection model, we provide first evidence for a role of SinC in C. caviae virulence in vivo.


Assuntos
Infecções por Chlamydia/genética , Chlamydia/genética , Mutagênese Insercional/genética , Zoonoses/genética , Animais , Proteínas de Bactérias/genética , Embrião de Galinha , Chlamydia/patogenicidade , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia trachomatis/patogenicidade , Chlorocebus aethiops , Células HeLa , Humanos , Íntrons/genética , Mutação/genética , Células Vero , Zoonoses/microbiologia , Zoonoses/patologia
9.
Medchemcomm ; 10(11): 1966-1987, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206238

RESUMO

Chlamydia trachomatis infections are a global health problem and new approaches to treat C. trachomatis with drugs of high specificity would be valuable. A library of substituted ring fused 2-pyridones has been synthesized and evaluated for their ability to attenuate C. trachomatis infectivity. In vivo pharmacokinetic studies were performed, with the best candidates demonstrating that a C8-methylsulfonamide substituent improved pharmacokinetic properties important for oral administration. C8-Methyl sulfonamide analogue 30 inhibited C. trachomatis infectivity in low micromolar concentrations. Further pharmacokinetic evaluation at an oral dose of 10 mg kg-1 showed an apparent bioavailability of 41%, compared to C8-cyclopropyl and -methoxy analogues which had negligible oral uptake. In vitro ADME (absorption, distribution, metabolism and excretion) testing of solubility and Caco-2 cell permeability revealed that both solubility and permeability is greatly improved with the C8-methyl sulfonamide 30, effectively moving it from BCS (Biopharmaceutical Classification System) class IV to II.

10.
Microbes Infect ; 10(12-13): 1325-34, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18761100

RESUMO

Lactobacilli are normal inhabitants of our microbiota and are known to protect against pathogens. Neisseria gonorrhoeae is a human specific pathogenic bacterium that colonises the urogenital tract where it causes gonorrhoea. In this study we analysed early interactions between lactobacilli and gonococci and investigated how they compete for adherence to human epithelial cervical cells. We show that lactobacilli adhere at various levels and that the number of adherent bacteria does not correlate to the level of protection against gonococcal infection. Protection against gonococcal adhesion varied between Lactobacillus species. Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus reuteri were capable of reducing gonococcal adherence while Lactobacillus rhamnosus was not. Lactobacillus strains of vaginal origin had the best capacity to remain attached to the host cell during gonococcal adherence. Further, we show that gonococci and lactobacilli interact with each other with resultant lactobacilli incorporation into the gonococcal microcolony. Hence, gonococci bind to colonised lactobacilli and this complex frequently detaches from the epithelial cell surface, resulting in reduced bacterial colonisation. Also, purified gonococcal pili are capable of removing adherent lactobacilli from the cell surface. Taken together, we reveal novel data regarding gonococcal and lactobacilli competition for adherence that will benefit future gonococcal prevention and treatments.


Assuntos
Aderência Bacteriana , Colo do Útero/microbiologia , Células Epiteliais/microbiologia , Lactobacillus/fisiologia , Neisseria gonorrhoeae/fisiologia , Linhagem Celular Tumoral , Colo do Útero/citologia , Técnicas de Cocultura , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactobacillus/classificação , Lactobacillus/isolamento & purificação , Lactobacillus/patogenicidade , Microscopia de Fluorescência , Neisseria gonorrhoeae/patogenicidade
11.
PLoS One ; 9(12): e114208, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25460012

RESUMO

The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.


Assuntos
Dano ao DNA , Enzimas de Restrição do DNA/metabolismo , Mitose , Neisseria gonorrhoeae/enzimologia , Células Epiteliais/microbiologia , Neisseria gonorrhoeae/patogenicidade
12.
PLoS One ; 8(5): e63592, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23675492

RESUMO

We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.


Assuntos
Ciclo Celular/fisiologia , Colo do Útero/citologia , Colo do Útero/microbiologia , Células Epiteliais/metabolismo , Lactobacillus/fisiologia , Divisão Celular , Linhagem Celular , Proliferação de Células , Citocinese , Células Epiteliais/microbiologia , Feminino , Fase G1 , Humanos , Ácido Láctico/biossíntese
13.
PLoS One ; 6(9): e24353, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949708

RESUMO

Polymorphonuclear neutrophils (PMNs) are important components of the human innate immune system and are rapidly recruited at the site of bacterial infection. Despite the effective phagocytic activity of PMNs, Neisseria gonorrhoeae infections are characterized by high survival within PMNs. We reveal a novel type IV pilus-mediated adherence of pathogenic Neisseria to the uropod (the rear) of polarized PMNs. The direct pilus-uropod interaction was visualized by scanning electron microscopy and total internal reflection fluorescence (TIRF) microscopy. We showed that N. meningitidis adhesion to the PMN uropod depended on both pilus-associated proteins PilC1 and PilC2, while N. gonorrhoeae adhesion did not. Bacterial adhesion elicited accumulation of the complement regulator CD46, but not I-domain-containing integrins, beneath the adherent bacterial microcolony. Electrographs and live-cell imaging of PMNs suggested that bacterial adherence to the uropod is followed by internalization into PMNs via the uropod. We also present data showing that pathogenic Neisseria can hitchhike on PMNs to hide from their phagocytic activity as well as to facilitate the spread of the pathogen through the epithelial cell layer.


Assuntos
Polaridade Celular , Neisseria gonorrhoeae/fisiologia , Neisseria meningitidis/fisiologia , Neutrófilos/citologia , Neutrófilos/microbiologia , Aderência Bacteriana , Sobrevivência Celular , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Fímbrias Bacterianas/fisiologia , Humanos , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Proteína Cofatora de Membrana/metabolismo , Imagem Molecular , Neutrófilos/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA