RESUMO
Pesticides are on the list of substances that are routinely monitored by agencies and organizations in various natural environments and habitats. Diazinon (DZN) is the active ingredient in more than 20 agricultural pesticides, it causes the most damage and has been prohibited in many countries around the world. The final product CoWO4/g-C3N4 Z-scheme heterojunction was successfully synthesized in this work, where CoWO4 nanoparticles were deposited on the surface of g-C3N4. CoWO4/g-C3N4 structure allowed for the efficient separation of photo-generated electron-hole pairs, with electrons at the CoWO4 CB migrating to the g-C3N4 VB and preserving the electrons at the g-C3N4 CB and holes in the CoWO4 VB. The photodegradation efficiency of DZN using CoWO4/g-C3N4 Z-scheme heterojunction was investigated, as compared with its precursors, such as CoWO4, and g-C3N4. CoWO4/g-C3N4 Z-scheme heterojunction demonstrated the highest degradation capacity for DZN removal. Based on the results, the photocatalysis of the CoWO4/g-C3N4 Z-scheme heterojunction can be recycled for the effective removal of DZN by simple washing after three runs, proving the heterojunction's stability and suggesting CoWO4 as a promising material for the removal of DZN from contaminated water sources.
Assuntos
Diazinon , Praguicidas , Peróxido de Hidrogênio , Fotólise , AgriculturaRESUMO
In this study, porous biochar (PBC) was prepared by acid activation of biochar derived from food waste (FWBC) and used as a suitable approach for the removal of 4-chlorophenol (CP) in wastewater. The characterization of PBC and the influent of different experimental conditions are determined. After the acid activation process, the surface area, porosity, and functional groups of PBC were developed. The removal performances of CP (1 mg/L) by PBC and FWBC were archived at 97.8 and 82.1%, respectively. Adsorption kinetics and isotherms of CP were followed by the second-order and Langmuir models, respectively. The maximum capacities of CP uptake onto mono-layer of FWBC and PBC based on the Langmuir model were determined at 79.8 and 108.7 mg/g, respectively. Besides, PBC could remove more than 89% CP from wastewater within 45 min of reaction time and it is suitable to reuse 8 times with over 60% adsorption efficiency of CP. In addition, the adsorption mechanism and environmental impact were discussed in detail. This work could bring a sustainable approach to the treatment of CP in wastewater as well as the management of food waste in Vietnam.
Assuntos
Clorofenóis , Eliminação de Resíduos , Poluentes Químicos da Água , Águas Residuárias , Porosidade , Alimentos , Poluentes Químicos da Água/análise , Adsorção , CinéticaRESUMO
The presence of pharmaceutical pollutants in water has emerged as a significant public health concern due to their potential adverse impacts, including the development of antibiotic resistance. Consequently, advanced oxidation processes based on photocatalysis have garnered considerable attention for treating pharmaceutical contaminants in wastewater. In this study, graphitic carbon nitride (g-CN), a metal-free photocatalyst, was synthesized by the polymerization of melamine and assessed as a potential candidate for the photodegradation of acetaminophen (AP) and carbamazepine (CZ) in wastewater. Under alkaline conditions, g-CN demonstrated high removal efficiencies of 98.6% and 89.5% for AP and CZ, respectively. The relationships between degradation efficiency and catalyst dosage, initial pharmaceutical concentration, and photodegradation kinetics were investigated. Increasing the catalyst dose facilitated the removal of antibiotic contaminants, with an optimum catalyst dose of 0.1 g, achieving a photodegradation efficiency of 90.2% and 82.7% for AP and CZ, respectively. The synthesized photocatalyst removed over 98% of AP (1 mg/L) within 120 min, with a rate constant of 0.0321 min-1, 2.14 times faster than that of CZ. Quenching experiments revealed that g-CN was active under solar light and generated highly reactive oxidants such as hydroxyl (â¢OH) and superoxide (â¢O2-). The reuse test confirmed the good stability of g-CN for treating pharmaceuticals during three repeated cycles. Finally, the photodegradation mechanism and environmental impacts were discussed. This study presents a promising approach for treating and mitigating pharmaceutical contaminants in wastewater.
Assuntos
Poluentes Ambientais , Grafite , Águas Residuárias , Metais , Preparações Farmacêuticas , CatáliseRESUMO
Caffeine (CaF), a widely consumed compound, has been associated with various harmful effects on human health, including metabolic, cardiovascular disease, and reproductive disorders. Moreover, it poses a signifincant threat to organisms and aquatic ecosystems, leading to water pollution concerns. Therefore, the removal of CaF from wastewater is crucial for mitigating water pollution and minimizing its detrimental impacts on both humans and the environment. In this study, a solar-driven Cu-doped graphitic carbon nitride (Cu/CN) photocatalyst was synthesized and evaluated for its effectiveness in oxidizing CaF in wastewater. The Cu/CN photocatalyst, with a low band gap energy of 2.58eV, exhibited superior performance in degrading CaF compared to pure graphitic carbon nitride (CN). Under solar light irradiation, CuCN achieved a remarkable CaF degradation efficiency of 98.7% CaF, surpassing CN's efficiency of 74.5% by 24.2%. The synthesized Cu/CN photocatalyst demonstrated excellent removal capability, achieving a removal rate of over 88% for CaF in wastewater. Moreover, the reusability test showed that Cu/CN could be successfully reused up to five cycles maintaining a high removal efficiency of 74% for CaF in the fifth cycle. Additionally, the study elucidated the oxidation mechanism of CaF using solar-driven Cu/CN photocatalyst and highlighted the environmental implications of the process.
Assuntos
Cafeína , Águas Residuárias , Humanos , Ecossistema , Luz Solar , CatáliseRESUMO
Copper oxide nanoparticles (CuO NPs) are one of the most widely used nanomaterials nowadays. CuO NPs have numerous applications in biological processes, medicine, energy devices, environmental remediation, and industrial fields from nanotechnology. With the increasing concern about the energy crisis and the challenges of chemical and physical approaches for preparing metal NPs, attempts to develop modern alternative chemistry have gotten much attention. Biological approaches that do not produce toxic waste and therefore do not require purification processes have been the subject of numerous studies. Plants may be extremely useful in the study of biogenic metal NP synthesis. This review aims to shed more light on the interactions between plant extracts and CuO NP synthesis. The use of living plants for CuO NPs biosynthesis is a cost-effective and environmentally friendly process. To date, the findings have revealed many aspects of plant physiology and their relationships to the synthesis of NPs. The current state of the art and potential challenges in the green synthesis of CuO NPs are described in this paper. This study found a recent increase in the green synthesis of CuO NPs using various plant extracts. As a result, a thorough explanation of green synthesis and stabilizing agents for CuO NPs made from these green sources is given. Additionally, the multifunctional applications of CuO NPs synthesized with various plant extracts in environmental remediation, sensing, catalytic reduction, photocatalysis, diverse biological activities, energy storage, and several organic transformations such as reduction, coupling, and multicomponent reactions were carefully reviewed. We expect that this review could serve as a useful guide for readers with a general interest in the plant extract mediated biosynthesis of CuO NPs and their potential applications.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Cobre , Química Verde , Extratos VegetaisRESUMO
The cerebellar projection from the trigeminal nuclear complex is one of the major populations of the cerebellar inputs. Although this projection is essential in cerebellar functional processing and organization, its morphological organization has not been systematically clarified. The present study addressed this issue by lobule-specific retrograde neuronal labeling and single axonal reconstruction with anterograde labeling. The cerebellar projection arose mainly from the interpolaris subdivision of the spinal trigeminal nucleus (Sp5I) and the principal trigeminal sensory nucleus (Pr5). Although crus II, paramedian lobule, lobule IX, and simple lobule were the major targets, paraflocculus, and other lobules received some projections. Reconstructed single trigeminocerebellar axons showed 77.8 mossy fiber terminals on average often in multiple lobules but no nuclear collaterals. More terminals were located in zebrin-negative or lightly-positive compartments than in zebrin-positive compartments. While Pr5 axons predominantly projected to ipsilateral crus II, Sp5I axons projected either predominantly to crus II and paramedian lobule often bilaterally, or predominantly to lobule IX always ipsilaterally. Lobule IX-predominant-type Sp5I neurons specifically expressed Gpr26. Gpr26-tagged neuronal labeling produced a peculiar mossy fiber distribution, which was dense in the dorsolateral lobule IX and extending transversely to the dorsal median apex in lobule IX. The projection to the cerebellar nuclei was observed in collaterals of ascending Sp5I axons that project to the diencephalon. In sum, multiple populations of trigeminocerebellar projections showed divergent projections to cerebellar lobules. The projection was generally complementary with the pontine projection and partly matched with the reported orofacial receptive field arrangement.
Assuntos
Axônios , Vermis Cerebelar , Animais , Camundongos , Neurônios , Cerebelo , Núcleos CerebelaresRESUMO
In this work, La-TiO2 nanocomposite was synthesized by loading lanthanum onto TiO2 and used for improving photodegradation of phenol in wastewater. The characterizations of La-TiO2 demonstrated that the loading of La onto TiO2 not only increased its adsorption light zone up to 470 nm but also decreased the band gap energy from 3.1 to 2.64 eV. Photoluminescence spectra of La-TiO2 confirmed the enhancing separation rate between electron and hole, leading to improve photodegradation efficiency of phenol. The removal rate of phenol was influenced by solution pH and alkaline conditions could bring better removal efficiency. In presence of light, the photodegradation efficiency of phenol by TiO2 was 64.1%, while it increased up to 93.4% by La-TiO2 photocatalyst. La-TiO2 nanocomposite was tested for five cycles and it showed only 13.8% dropping in the photodegradation efficiency of phenol. Besides, over 82% of phenol was removed from the wastewater sample by modified TiO2, demonstrating the potential of La-TiO2 photocatalyst for water pollution control.
Assuntos
Nanocompostos , Poluentes Químicos da Água , Fenol/química , Águas Residuárias , Poluentes Químicos da Água/química , Catálise , Fenóis , Titânio/química , Nanocompostos/químicaRESUMO
In this work, magnesium oxide nanoparticles supported biochar derived from tea wastes (MgO@TBC) was prepared as an effective adsorbent for removing hazardous o-chlorophenol (o-CP) from industrial wastewater. The surface area, porous structure, surface functional groups and surface charge of tea waste biochar (TBC) significantly enhanced after the modification process. The best uptake performance of o-CP was found at pH = 6.5 and 0.1 g of MgO@TBC adsorbent. According to the adsorption isotherm, the adsorption of o-CP onto MgO@TBC followed the Langmuir model with a maximum uptake capacity of 128.7 mg/g, which was 26.5% higher than TBC (94.6 mg/g). MgO@TBC could be reused for eight cycles with a high o-CP uptake performance (over 60%). Besides, it also exhibited good removal performance of o-CP from industrial wastewater with a removal rate of 81.7%. The adsorption behaviors of o-CP onto MgO@TBC are discussed based on the experimental results. This work may provide information to prepare an effective adsorbent for removing hazardous organic contaminants in wastewater.
Assuntos
Nanopartículas , Poluentes Químicos da Água , Óxido de Magnésio/química , Águas Residuárias , Adsorção , Cinética , Poluentes Químicos da Água/análise , Carvão Vegetal/química , CháRESUMO
Light regulates physiology, mood, and behavior through signals sent to the brain by intrinsically photosensitive retinal ganglion cells (ipRGCs). How primate ipRGCs sense light is unclear, as they are rare and challenging to target for electrophysiological recording. We developed a method of acute identification within the live, ex vivo retina. Using it, we found that ipRGCs of the macaque monkey are highly specialized to encode irradiance (the overall intensity of illumination) by blurring spatial, temporal, and chromatic features of the visual scene. We describe mechanisms at the molecular, cellular, and population scales that support irradiance encoding across orders-of-magnitude changes in light intensity. These mechanisms are conserved quantitatively across the ~70 million years of evolution that separate macaques from mice.
Assuntos
Evolução Biológica , Iluminação , Células Ganglionares da Retina , Animais , Camundongos , Luz , Células Ganglionares da Retina/fisiologia , MacacaRESUMO
In the cerebellar cortex, heterogeneous populations of Purkinje cells (PCs), classified into zebrin (aldolase C)-positive (Z+) and -negative (Z-) types, are arranged into separate longitudinal zones. They have different topographic neuronal connections and show different patterns of activity in behavior tasks. However, whether the zebrin type of PCs directly links with the physiological properties of the PC has not been well clarified. Therefore, we applied in vitro whole-cell patch-clamp recording in Z+ and Z- PCs in vermal and hemispheric neighboring zebrin zones in zebrin-visualized mice. Intrinsic excitability is significantly higher in Z- PCs than in Z+ PCs. Furthermore, intrinsic plasticity and synaptic long-term potentiation are enhanced more in Z- PCs than in Z+ PCs. The difference was mediated by different modulation of SK channel activities between Z+ and Z- PCs. The results indicate that cellular physiology differentially tunes to the functional compartmentalization of heterogeneous PCs.
RESUMO
The number of antibiotic compounds in wastewaters has been growing globally due to the covid-19 problem. Using antibiotics to treat the patients would produce larger amounts of these compounds into the environment with negative impacts. Hence, finding out the method for the elimination of toxic organic pollutants as well as antibiotics in water is urgent (In this study, the treatment of antibiotic pollutants including cefalexin (CF) and tetracycline (TC) was investigated by applying the advanced oxidation process based on Ni-doped TiO2 (Ni-TiO2). The characterizations technologies such as XRD, XPS, UV-vis, PL, and PC indicated that Ni doping would improve the photocatalytic performance of TiO2. In the photodegradation experiments, the Ni-TiO2 possessed high photocatalytic degradation efficiencies with 93.6% for CF and 82.5% for TC. Besides, the removal rates of antibiotics after five cycles are higher than 75%, implying excellent stability of Ni-TiO2 photocatalyst. The result from the treatment of wastewater samples revealed that the Ni-TiO2 photocatalytic had good performance for removal of CF and TC at a high level of 88.6 and 80.2%, respectively.
Assuntos
COVID-19 , Poluentes Ambientais , Poluentes Químicos da Água , Antibacterianos , Catálise , Humanos , Fotólise , Tetraciclina , Titânio , Águas ResiduáriasRESUMO
The aim of this study is to present the potential of activated carbon fiber (CF) impregnated with lanthanum (La) as a novel adsorbent (La-CF) of phosphate-phosphorus (P) and to assess the value-added due to P-recovery from wastewater using La-CF. The CF were loaded with La and the loaded CF was then calcined at 500 °C. The La-CF adsorbent was used in a series of batch experiments to characterize the adsorption of P at pH of 6-10 and P concentrations of 1-200 mg/L. Physical-chemical properties such as surface morphology, surface charge, surface area, and surface chemistry were determined for the La-CF. The La-CF exhibited adsorption capacity of 196.5 mg/g, fast sorption kinetics and high selectivity for P removal from aqueous solution. La-CF removed 97.3% of P from wastewater and achieved P-level to below 2 mg/L. It was repetitively reused over 10 times in successive cycles to remove P from wastewater. The value-added by recovery of P from wastewater was calculated at around 0.12 US$/L, demonstrating economic benefits of La-CF. In conclusion, the successful removal, recycling, and recovery value-added of P using La-CF adsorbent displayed good potential for developing the technology for treatment of wastewaters to recover valuable compounds such as phosphorus.