Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1545(1-2): 216-26, 2001 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-11342047

RESUMO

Previous studies on the conformation of the monomeric acetylcholinesterase (AChE) from the krait (Bungarus fasciatus) venom showed that the protein possesses a large permanent dipole moment. These studies predicted that thermal irreversible denaturation must occur via partially unfolded states. The thermal stability of Bungarus AChE was determined using capillary electrophoresis (CE) with optimized conditions. Runs performed at convenient temperature scanning rates provided evidence for an irreversible denaturation process according to the Lumry and Eyring model. The mid-transition temperature, T(m), and the effective enthalpy change, DeltaH(m) were determined at different pH. The temperature dependence of the free energy, DeltaG, of Bungarus AChE unfolding was drawn using values of T(m), DeltaH(m) and DeltaC(p) determined by CE. The thermodynamic parameters for the thermal denaturation of the monomeric snake enzyme were compared with those of different dimeric and tetrameric ChEs. It was shown that the changes in the ratio of DeltaH(cal/)DeltaH(vH) and DeltaC(p) reflect the oligomerization state of these proteins. All these results indicate that wild-type monomeric Bungarus AChE is a stable enzyme under standard conditions. However, designed mutants of this enzyme capable of degrading organophosphates have to be engineered to enhance their thermostability.


Assuntos
Acetilcolinesterase/química , Bungarus/metabolismo , Venenos Elapídicos/enzimologia , Acetilcolinesterase/isolamento & purificação , Acetilcolinesterase/metabolismo , Animais , Varredura Diferencial de Calorimetria , Catálise , Eletroforese Capilar , Temperatura Alta , Desnaturação Proteica , Dobramento de Proteína , Termodinâmica
2.
J Physiol Paris ; 92(5-6): 357-62, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9789837

RESUMO

Enzymes hydrolyzing organophosphates could be used as catalytic scavengers for treatment of organophosphate poisoning and for decontamination. Two organophosphorus hydrolases (OPH) were selected: the Flavobacterium sp/Pseudomonas diminuta phosphotriesterase (PTE) and human paraoxonase (HuPON). Genes encoding these enzymes were cloned and functional recombinant enzymes expressed. PTE was expressed in E. coli. Natural HuPON was purified from human plasma; recombinant HuPON was expressed in human embryonic kidney 293 T cells. Although HuPON displays interesting catalytic properties, a site-directed mutagenesis program was undertaken to improve its catalytic efficiency. PTE has high efficiency in hydrolysis of organophosphates, including nerve agents. PTE injected in rat has a half-life of 100 min. However, to overcome pharmacokinetic problems of injected OPH and/or immunological incompatibility, the model enzyme (recombinant PTE) was immobilized onto a hollow-fiber reactor. This reactor designed for extracorporeal blood circulation is under experimentation for post-exposure detoxification.


Assuntos
Terapia Enzimática , Enzimas/metabolismo , Intoxicação por Organofosfatos , Compostos Organofosforados/metabolismo , Animais , Catálise , Humanos , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA