Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Ther ; 25(4): 1038-1055, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28236575

RESUMO

Machado-Joseph disease (MJD) is a genetic neurodegenerative disease caused by an expanded polyglutamine tract within the protein ataxin-3 (ATXN3). Despite current efforts, MJD's mechanism of pathogenesis remains unclear and no disease-modifying treatment is available. Therefore, in this study, we investigated (1) the role of the 3' UTR of ATXN3, a putative microRNA (miRNA) target, (2) whether miRNA biogenesis and machinery are dysfunctional in MJD, and (3) which specific miRNAs target ATXN3-3' UTR and whether they can alleviate MJD neuropathology in vivo. Our results demonstrate that endogenous miRNAs, by targeting sequences in the 3' UTR, robustly reduce ATXN3 expression and aggregation in vitro and neurodegeneration and neuroinflammation in vivo. Importantly, we found an abnormal MJD-associated downregulation of genes involved in miRNA biogenesis and silencing activity. Finally, we identified three miRNAs-mir-9, mir-181a, and mir-494-that interact with the ATXN3-3' UTR and whose expression is dysregulated in human MJD neurons and in other MJD cell and animal models. Furthermore, overexpression of these miRNAs in mice resulted in reduction of mutATXN3 levels, aggregate counts, and neuronal dysfunction. Altogether, these findings indicate that endogenous miRNAs and the 3' UTR of ATXN3 play a crucial role in MJD pathogenesis and provide a promising opportunity for MJD treatment.


Assuntos
Regulação da Expressão Gênica , Doença de Machado-Joseph/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Ataxina-3/genética , Linhagem Celular , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Genes Reporter , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Agregação Patológica de Proteínas , Interferência de RNA , Estabilidade de RNA
2.
Adv Exp Med Biol ; 1049: 395-438, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29427115

RESUMO

Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/terapia , Animais , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Peptídeos/genética , Peptídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
3.
Brain ; 138(Pt 12): 3537-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26490332

RESUMO

Machado-Joseph disease is a progressive neurodegenerative disorder associated with the polyQ-expanded ataxin-3 (encoded by ATXN3), for which no therapy is available. With the aim of clarifying the mechanism of neurodegeneration, we hypothesized that the abnormally long polyQ tract would interact aberrantly with ataxin-2 (encoded by ATXN2), another polyQ protein whose function has recently been linked to translational regulation. Using patient's samples and cellular and animal's models we found that in Machado-Joseph disease: (i) ataxin-2 levels are reduced; and (ii) its subcellular localization is changed towards the nucleus. Restoring ataxin-2 levels by lentiviral-mediated overexpression: (i) reduced mutant ataxin-3 levels; and (ii) rescued behaviour defects and neuropathology in a transgenic mouse model of Machado-Joseph disease. Conversely (i) mutating the ataxin-2 motif that enables binding to its natural interactor and translation activator poly(A)-binding protein; or (ii) overexpressing poly(A)-binding protein, had opposite effects, increasing mutant ataxin-3 translation and aggregation. This work suggests that in Machado-Joseph disease, mutant ataxin-3 drives an abnormal reduction of ataxin-2 levels, which overactivates poly(A)-binding protein, increases translation of mutant ataxin-3 and other proteins and aggravates Machado-Joseph disease. Re-establishment of ataxin-2 levels reduces mutant ataxin-3 and alleviates Machado-Joseph disease pathogenesis opening a new avenue for therapeutic intervention in this and potentially other polyQ disorders.


Assuntos
Ataxina-2/genética , Ataxina-2/metabolismo , Ataxina-3/genética , Regulação para Baixo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Mutação , Biossíntese de Proteínas , Animais , Ataxina-3/biossíntese , Humanos , Lentivirus/genética , Doença de Machado-Joseph/terapia , Camundongos , Camundongos Transgênicos , Proteínas de Ligação a Poli(A)/metabolismo
4.
J Cachexia Sarcopenia Muscle ; 13(2): 1385-1402, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35194965

RESUMO

BACKGROUND: The cause of the motor neuron (MN) death that drives terminal pathology in amyotrophic lateral sclerosis (ALS) remains unknown, and it is thought that the cellular environment of the MN may play a key role in MN survival. Several lines of evidence implicate vesicles in ALS, including that extracellular vesicles may carry toxic elements from astrocytes towards MNs, and that pathological proteins have been identified in circulating extracellular vesicles of sporadic ALS patients. Because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle-secretory tissue, we hypothesized that muscle vesicles may be involved in ALS pathology. METHODS: Sporadic ALS patients were confirmed to be ALS according to El Escorial criteria and were genotyped to test for classic gene mutations associated with ALS, and physical function was assessed using the ALSFRS-R score. Muscle biopsies of either mildly affected deltoids of ALS patients (n = 27) or deltoids of aged-matched healthy subjects (n = 30) were used for extraction of muscle stem cells, to perform immunohistology, or for electron microscopy. Muscle stem cells were characterized by immunostaining, RT-qPCR, and transcriptomic analysis. Secreted muscle vesicles were characterized by proteomic analysis, Western blot, NanoSight, and electron microscopy. The effects of muscle vesicles isolated from the culture medium of ALS and healthy myotubes were tested on healthy human-derived iPSC MNs and on healthy human myotubes, with untreated cells used as controls. RESULTS: An accumulation of multivesicular bodies was observed in muscle biopsies of sporadic ALS patients by immunostaining and electron microscopy. Study of muscle biopsies and biopsy-derived denervation-naïve differentiated muscle stem cells (myotubes) revealed a consistent disease signature in ALS myotubes, including intracellular accumulation of exosome-like vesicles and disruption of RNA-processing. Compared with vesicles from healthy control myotubes, when administered to healthy MNs the vesicles of ALS myotubes induced shortened, less branched neurites, cell death, and disrupted localization of RNA and RNA-processing proteins. The RNA-processing protein FUS and a majority of its binding partners were present in ALS muscle vesicles, and toxicity was dependent on the expression level of FUS in recipient cells. Toxicity to recipient MNs was abolished by anti-CD63 immuno-blocking of vesicle uptake. CONCLUSIONS: ALS muscle vesicles are shown to be toxic to MNs, which establishes the skeletal muscle as a potential source of vesicle-mediated toxicity in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Idoso , Esclerose Lateral Amiotrófica/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/metabolismo , Células Musculares/metabolismo , Proteômica
5.
J Pers Med ; 10(3)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854276

RESUMO

Amyotrophic lateral sclerosis (ALS) is a terminal late-onset condition characterized by the loss of upper and lower motor neurons. Mutations in more than 30 genes are associated to the disease, but these explain only ~20% of cases. The molecular functions of these genes implicate a wide range of cellular processes in ALS pathology, a cohesive understanding of which may provide clues to common molecular mechanisms across both familial (inherited) and sporadic cases and could be key to the development of effective therapeutic approaches. Here, the different pathways that have been investigated in ALS are summarized, discussing in detail: mitochondrial dysfunction, oxidative stress, axonal transport dysregulation, glutamate excitotoxicity, endosomal and vesicular transport impairment, impaired protein homeostasis, and aberrant RNA metabolism. This review considers the mechanistic roles of ALS-associated genes in pathology, viewed through the prism of shared molecular pathways.

6.
Front Neurol ; 10: 400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139131

RESUMO

Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is an incurable neurodegenerative condition, characterized by the loss of upper and lower motor neurons. It affects 1-1.8/100,000 individuals worldwide, and the number of cases is projected to increase as the population ages. Thus, there is an urgent need to identify both therapeutic targets and disease-specific biomarkers-biomarkers that would be useful to diagnose and stratify patients into different sub-groups for therapeutic strategies, as well as biomarkers to follow the efficacy of any treatment tested during clinical trials. There is a lack of knowledge about pathogenesis and many hypotheses. Numerous "omics" studies have been conducted on ALS in the past decade to identify a disease-signature in tissues and circulating biomarkers. The first goal of the present review was to group the molecular pathways that have been implicated in monogenic forms of ALS, to enable the description of patient strata corresponding to each pathway grouping. This strategy allowed us to suggest 14 strata, each potentially targetable by different pharmacological strategies. The second goal of this review was to identify diagnostic/prognostic biomarker candidates consistently observed across the literature. For this purpose, we explore previous biomarker-relevant "omics" studies of ALS and summarize their findings, focusing on potential circulating biomarker candidates. We systematically review 118 papers on biomarkers published during the last decade. Several candidate markers were consistently shared across the results of different studies in either cerebrospinal fluid (CSF) or blood (leukocyte or serum/plasma). Although these candidates still need to be validated in a systematic manner, we suggest the use of combinations of biomarkers that would likely reflect the "health status" of different tissues, including motor neuron health (e.g., pNFH and NF-L, cystatin C, Transthyretin), inflammation status (e.g., MCP-1, miR451), muscle health (miR-338-3p, miR-206) and metabolism (homocysteine, glutamate, cholesterol). In light of these studies and because ALS is increasingly perceived as a multi-system disease, the identification of a panel of biomarkers that accurately reflect features of pathology is a priority, not only for diagnostic purposes but also for prognostic or predictive applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA