Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38676124

RESUMO

Electric-field energy harvesters (EFEHs) have emerged as a promising technology for harnessing the electric field surrounding energized environments. Current research indicates that EFEHs are closely associated with Tribo-Electric Nano-Generators (TENGs). However, the performance of TENGs in energized environments remains unclear. This work aims to evaluate the performance of TENGs in electric-field energy harvesting applications. For this purpose, TENGs of different sizes, operating in single-electrode mode were conceptualized, assembled, and experimentally tested. Each TENG was mounted on a 1.5 HP single-phase induction motor, operating at nominal parameters of 8 A, 230 V, and 50 Hz. In addition, the contact layer was mounted on a linear motor to control kinematic stimuli. The TENGs successfully induced electric fields and provided satisfactory performance to collect electrostatic charges in fairly variable electric fields. Experimental findings disclosed an approximate increase in energy collection ranging from 1.51% to 10.49% when utilizing TENGs compared to simple EFEHs. The observed correlation between power density and electric field highlights TENGs as a more efficient energy source in electrified environments compared to EFEHs, thereby contributing to the ongoing research objectives of the authors.

2.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676111

RESUMO

This paper introduces an innovative approach to 3D environmental mapping through the integration of a compact, handheld sensor package with a two-stage sensor fusion pipeline. The sensor package, incorporating LiDAR, IMU, RGB, and thermal cameras, enables comprehensive and robust 3D mapping of various environments. By leveraging Simultaneous Localization and Mapping (SLAM) and thermal imaging, our solution offers good performance in conditions where global positioning is unavailable and in visually degraded environments. The sensor package runs a real-time LiDAR-Inertial SLAM algorithm, generating a dense point cloud map that accurately reconstructs the geometric features of the environment. Following the acquisition of that point cloud, we post-process these data by fusing them with images from the RGB and thermal cameras and produce a detailed, color-enriched 3D map that is useful and adaptable to different mission requirements. We demonstrated our system in a variety of scenarios, from indoor to outdoor conditions, and the results showcased the effectiveness and applicability of our sensor package and fusion pipeline. This system can be applied in a wide range of applications, ranging from autonomous navigation to smart agriculture, and has the potential to make a substantial benefit across diverse fields.

3.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842283

RESUMO

Fuel moisture content (FMC) proved to be one of the most relevant parameters for controlling fire behavior and risk, particularly at the wildland-urban interface (WUI). Data relating FMC to spectral indexes for different species are an important requirement identified by the wildfire safety community. In Valparaíso, the WUI is mainly composed of Eucalyptus Globulus and Pinus Radiata-commonly found in Mediterranean WUI areas-which represent the 97.51% of the forests plantation inventory. In this work we study the spectral signature of these species under different levels of FMC. In particular, we analyze the behavior of the spectral reflectance per each species at five dehydration stages, obtaining eighteen spectral indexes related to water content and, for Eucalyptus Globulus, the area of each leave-associated with the water content-is also computed. As the main outcome of this research, we provide a validated linear regression model associated with each spectral index and the fuel moisture content and moisture loss, per each species studied.

4.
Transl Psychiatry ; 13(1): 403, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123552

RESUMO

ANK3 is a leading bipolar disorder (BD) candidate gene in humans and provides a unique opportunity for studying epilepsy-BD comorbidity. Previous studies showed that deletion of Ank3-1b, a BD-associated variant of Ank3 in mice leads to increased firing threshold and diminished action potential dynamic range of parvalbumin (PV) interneurons and absence epilepsy, thus providing a biological mechanism linking epilepsy and BD. To explore the behavioral overlap of these disorders, we characterized behavioral patterns of Ank3-1b KO mice during overnight home-cage activity and examined network activity during these behaviors using paired video and EEG recordings. Since PV interneurons contribute to the generation of high-frequency gamma oscillations, we anticipated changes in the power of neocortical EEG signals in the gamma frequency range (> 25 Hz) during behavioral states related to human BD symptoms, including abnormal sleep, hyperactivity, and repetitive behaviors. Ank3-1b KO mice exhibited an overall increase in slow gamma (~25-45 Hz) power compared to controls, and slow gamma power correlated with seizure phenotype severity across behaviors. During sleep, increased slow gamma power correlated with decreased time spent in the rapid eye movement (REM) stage of sleep. Seizures were more common during REM sleep compared to non-REM (NREM) sleep. We also found that Ank3-1b KO mice were hyperactive and exhibited a repetitive behavior phenotype that co-occurred with increased slow gamma power. Our results identify a novel EEG biomarker associating Ank3 genetic variation with BD and epilepsy and suggest modulation of gamma oscillations as a potential therapeutic target.


Assuntos
Transtorno Bipolar , Epilepsia , Neocórtex , Animais , Humanos , Camundongos , Transtorno Bipolar/genética , Comorbidade , Eletroencefalografia , Epilepsia/genética , Neocórtex/fisiologia , Convulsões , Sono/fisiologia
5.
Plants (Basel) ; 10(4)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916338

RESUMO

The vegetation indices derived from spectral reflectance have served as an indicator of vegetation's biophysical and biochemical parameters. Some of these indices are capable of characterizing more than one parameter at a time. This study examines the feasibility of retrieving several spectral vegetation indices from a single index under the assumption that all these indices are correlated with water content. The models used are based on a linear regression adjusted with least squares. The spectral signatures of Eucalyptus globulus and Pinus radiata, which constitute 97.5% of the forest plantation in Valparaiso region in Chile, have been used to test and validate the proposed approach. The linear models were fitted with an independent data set from which their performance was assessed. The results suggest that from the Leaf Water Index, other spectral indices can be recovered with a root mean square error up to 0.02, a bias of 1.12%, and a coefficient of determination of 0.77. The latter encourages using a sensor with discrete wavelengths instead of a continuum spectrum to estimate the forestry's essential parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA