Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Virol ; 95(20): e0083721, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319159

RESUMO

Interferon-induced transmembrane (IFITM) proteins inhibit a broad range of enveloped viruses by blocking entry into host cells. We used an inducible overexpression system to investigate if IFITM1, IFITM2, and IFITM3 could modulate early and/or late stages of influenza A virus (IAV) or parainfluenza virus 3 (PIV-3) infection in human A549 airway epithelial cells. IAV and PIV-3 represent respiratory viruses which utilize distinct cellular entry pathways. We verify entry by endocytosis for IAV, whereas PIV-3 infection was consistent with fusion at the plasma membrane. Following induction prior to infection, all three IFITM proteins restricted the percentage of IAV-infected cells at 8 hours postinfection. In contrast, prior induction of IFITM1 and IFITM2 did not inhibit PIV-3 infection, although a modest reduction was observed with IFITM3. Small interfering RNA (siRNA)-mediated knockdown of endogenous IFITM1, IFITM2, and IFITM3 expression, in the presence or absence of pretreatment with type I interferon, resulted in increased IAV, but not PIV-3, infection. This finding suggests that while all three IFITMs display antiviral activity against IAV, they do not restrict the early stages of PIV-3 infection. IAV and PIV-3 infection culminates in viral egress through budding at the plasma membrane. Inducible expression of IFITM1, IFITM2, or IFITM3 immediately after infection did not impact titers of infectious virus released from IAV- or PIV-3-infected cells. Our findings show that IFITM proteins differentially restrict the early stages of infection of two respiratory viruses with distinct cellular entry pathways but do not influence the late stages of replication for either virus. IMPORTANCE Interferon-induced transmembrane (IFITM) proteins restrict the initial stages of infection for several respiratory viruses; however, their potential to modulate the later stages of virus replication has not been explored. In this study, we highlight the utility of an inducible overexpression system to assess the impact of IFITM proteins on either early- or late-stage replication of two respiratory viruses. We demonstrate antiviral activity by IFITM1, IFITM2, and IFITM3 against influenza A virus (IAV) but not parainfluenza virus 3 (PIV-3) during the early stages of cellular infection. Furthermore, IFITM induction following IAV or PIV-3 infection does not restrict the late stages of replication of either virus. Our findings show that IFITM proteins can differentially restrict the early stages of infection of two viruses with distinct cellular entry pathways and yet do not influence the late stages of replication for either virus.


Assuntos
Viroses/metabolismo , Replicação Viral/fisiologia , Células A549 , Antígenos de Diferenciação/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endocitose/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Vírus da Parainfluenza 3 Humana/metabolismo , Vírus da Parainfluenza 3 Humana/patogenicidade , Proteínas de Ligação a RNA/metabolismo , Internalização do Vírus
2.
Cell Microbiol ; 22(5): e13170, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31990121

RESUMO

Influenza viruses are an important cause of respiratory infection worldwide. In humans, infection with seasonal influenza A virus (IAV) is generally restricted to the respiratory tract where productive infection of airway epithelial cells promotes viral amplification, dissemination, and disease. Alveolar macrophages (MΦ) are also among the first cells to detect and respond to IAV, where they play a pivotal role in mounting effective innate immune responses. In contrast to epithelial cells, IAV infection of MΦ is a "dead end" for most seasonal strains, where replication is abortive and newly synthesised virions are not released. Although the key replicative stages leading to productive IAV infection in epithelial cells are defined, there is limited knowledge about the abortive IAV life cycle in MΦ. In this review, we will explore host factors and viral elements that support the early stages (entry) through to the late stages (viral egress) of IAV replication in epithelial cells. Similarities, differences, and unknowns for each key stage of the IAV replicative cycle in MΦ will then be highlighted. Herein, we provide mechanistic insights into MΦ-specific control of seasonal IAV replication through abortive infection, which may in turn, contribute to effective host defence.


Assuntos
Células Epiteliais/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Vírus da Influenza A/fisiologia , Macrófagos/imunologia , Macrófagos/virologia , Infecções por Orthomyxoviridae/imunologia , Animais , Humanos , Imunidade Inata , Influenza Humana/virologia , Macrófagos Alveolares/virologia , Infecções por Orthomyxoviridae/virologia , Replicação Viral/fisiologia
3.
Biochem J ; 476(6): 1005-1008, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918067

RESUMO

Moloney leukemia virus 10 (MOV10) is an interferon-inducible RNA helicase that has been implicated in a broad range of cellular functions, including modulating the replication of a diverse range of viruses. However, the mechanisms by which MOV10 promotes or inhibits the replication of particular viruses have not been well defined. A recent paper published in the Biochemical Journal by Li et al. [Biochem. J. (2019) 476, 467-481] provides insight regarding the mechanisms by which MOV10 restricts influenza A virus (IAV) infection in host cells. First, the authors confirm that MOV10 binds to the viral nucleoprotein (NP) and sequesters the viral ribonucleoprotein complex in cytoplasmic granules called processing (P)-bodies, thus inhibiting IAV replication. Second, they demonstrate that the non-structural (NS)1 protein of IAV can act as an antagonist of MOV10, inhibiting the association of MOV10 with NP and promoting MOV10 degradation through the lysosomal pathway. Further research will determine if cellular RNA helicases such as MOV10 represent suitable targets for the development of novel anti-IAV therapies.


Assuntos
Infecções , Vírus da Influenza A , Citoplasma , Humanos , RNA Helicases
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648902

RESUMO

SARS-CoV-2 infection can cause severe pneumonia, wherein exacerbated inflammation plays a major role. This is reminiscent of the process commonly termed cytokine storm, a condition dependent on a disproportionated production of cytokines. This state involves the activation of the innate immune response by viral patterns and coincides with the biosynthesis of the biomass required for viral replication, which may overwhelm the capacity of the endoplasmic reticulum and drive the unfolded protein response (UPR). The UPR is a signal transduction pathway composed of three branches that is initiated by a set of sensors: inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6). These sensors control adaptive processes, including the transcriptional regulation of proinflammatory cytokines. Based on this background, the role of the UPR in SARS-CoV-2 replication and the ensuing inflammatory response was investigated using in vivo and in vitro models of infection. Mice and Syrian hamsters infected with SARS-CoV-2 showed a sole activation of the Ire1α-Xbp1 arm of the UPR associated with a robust production of proinflammatory cytokines. Human lung epithelial cells showed the dependence of viral replication on the expression of UPR-target proteins branching on the IRE1α-XBP1 arm and to a lower extent on the PERK route. Likewise, activation of the IRE1α-XBP1 branch by Spike (S) proteins from different variants of concern was a uniform finding. These results show that the IRE1α-XBP1 system enhances viral replication and cytokine expression and may represent a potential therapeutic target in SARS-CoV-2 severe pneumonia.


Assuntos
COVID-19 , Endorribonucleases , Proteínas Serina-Treonina Quinases , SARS-CoV-2 , Resposta a Proteínas não Dobradas , Replicação Viral , Proteína 1 de Ligação a X-Box , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , SARS-CoV-2/metabolismo , Humanos , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , COVID-19/imunologia , Camundongos , Mesocricetus , Transdução de Sinais , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Feminino
5.
Pathogens ; 12(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37111405

RESUMO

Ectopic protein overexpression in immortalised cell lines is a commonly used method to screen host factors for their antiviral activity against different viruses. However, the question remains as to what extent such artificial protein overexpression recapitulates endogenous protein function. Previously, we used a doxycycline-inducible overexpression system, in conjunction with approaches to modulate the expression of endogenous protein, to demonstrate the antiviral activity of IFITM1, IFITM2, and IFITM3 against influenza A virus (IAV) but not parainfluenza virus-3 (PIV-3) in A549 cells. We now show that constitutive overexpression of the same IFITM constructs in A549 cells led to a significant restriction of PIV-3 infection by all three IFITM proteins. Variable IFITM mRNA and protein expression levels were detected in A549 cells with constitutive versus inducible overexpression of each IFITM. Our findings show that overexpression approaches can lead to levels of IFITM1, IFITM2, and IFITM3 that significantly exceed those achieved through interferon stimulation of endogenous protein. We propose that exceedingly high levels of overexpressed IFITMs may not accurately reflect the true function of endogenous protein, thus contributing to discrepancies when attributing the antiviral activity of individual IFITM proteins against different viruses. Our findings clearly highlight the caveats associated with overexpression approaches used to screen cellular host proteins for antiviral activity.

6.
Sci Adv ; 9(36): eadg3469, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37683004

RESUMO

Influenza virus-specific tissue-resident memory (Trm) CD8+ T cells located along the respiratory tract provide cross-strain protection against a breadth of influenza viruses. We show that immunization with a single-cycle influenza virus vaccine candidate (S-FLU) results in the deposition of influenza virus nucleoprotein (NP)-specific CD8+ Trm along the respiratory tract that were more cross-reactive against viral variants and less likely to drive the development of cytotoxic T lymphocyte (CTL) escape mutants, as compared to the lung memory NP-specific CD8+ T cell pool established following influenza infection. This immune profile was linked to the limited inflammatory response evoked by S-FLU vaccination, which increased TCR repertoire diversity within the memory CD8+ T cell compartment. Cumulatively, this work shows that S-FLU vaccination evokes a clonally diverse, cross-reactive memory CD8+ T cell pool, which protects against severe disease without driving the virus to rapidly evolve and escape, and thus represents an attractive vaccine for use against rapidly mutating influenza viruses.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Linfócitos T CD8-Positivos , Influenza Humana/prevenção & controle , Imunização , Levanogestrel , Nucleoproteínas/genética , Pulmão
7.
Viruses ; 14(11)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36423158

RESUMO

MARCH1 and MARCH8 are closely related E3 ubiquitin ligases that ubiquitinate an overlapping spectrum of host proteins and restrict replication of certain viruses. While the antiviral activity of MARCH8 has been intensively studied, less is known regarding virus inhibition by MARCH1. Isoforms 1 and 2 of MARCH1 are very similar in overall structure but show major differences in their N-terminal cytoplasmic domain (N-CT). Herein, we used a doxycycline-inducible overexpression system to demonstrate that MARCH1.1 reduces titres of influenza A virus (IAV) released from infected cells whereas MARCH1.2 does not. The deletion of the entire N-CT of MARCH1.2 restored its ability to restrict IAV infectivity and sequential deletions mapped the restoration of IAV inhibition to delete the 16 N-terminal residues within the N-CT of MARCH1.2. While only MARCH1.1 mediated anti-IAV activity, qPCR demonstrated the preferential expression of MARCH1.2 over MARCH1.1 mRNA in unstimulated human peripheral blood mononuclear cells and also in monocyte-derived macrophages. Together, these studies describe the differential ability of MARCH1 isoforms to restrict IAV infectivity for the first time. Moreover, as published immunological, virological and biochemical studies examining the ability of MARCH1 to target particular ligands generally use only one of the two isoforms, these findings have broader implications for our understanding of how MARCH1 isoforms might differ in their ability to modulate particular host and/or viral proteins.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Leucócitos Mononucleares , Isoformas de Proteínas/genética , Antivirais
8.
Viruses ; 14(7)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35891527

RESUMO

RIG-I is an innate sensor of RNA virus infection and its activation induces interferon-stimulated genes (ISGs). In vitro studies using human cells have demonstrated the ability of synthetic RIG-I agonists (3pRNA) to inhibit IAV replication. However, in mouse models of IAV the effectiveness of 3pRNA reported to date differs markedly between studies. Myxoma resistance (Mx)1 is an ISG protein which mediates potent anti-IAV activity, however most inbred mouse strains do not express a functional Mx1. Herein, we utilised C57BL/6 mice that do (B6.A2G-Mx1) and do not (B6-WT) express functional Mx1 to assess the ability of prophylactic 3pRNA treatment to induce ISGs and to protect against subsequent IAV infection. In vitro, 3pRNA treatment of primary lung cells from B6-WT and B6.A2G-Mx1 mice resulted in ISG induction however inhibition of IAV infection was more potent in cells from B6.A2G-Mx1 mice. In vivo, a single intravenous injection of 3pRNA resulted in ISG induction in lungs of both B6-WT and B6.A2G-Mx1 mice, however potent and long-lasting protection against subsequent IAV challenge was only observed in B6.A2G-Mx1 mice. Thus, despite broad ISG induction, expression of a functional Mx1 is critical for potent and long-lasting RIG-I agonist-mediated protection in the mouse model of IAV infection.


Assuntos
Proteína DEAD-box 58 , Proteínas de Resistência a Myxovirus , Infecções por Orthomyxoviridae , Animais , Antivirais , Vírus da Influenza A , Interferons , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Proteínas de Resistência a Myxovirus/genética , Proteínas
9.
mBio ; 12(5): e0148421, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34517760

RESUMO

Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV. IMPORTANCE The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surface of infected cells, pointing to a distinct mechanism of antiviral activity. Our studies also demonstrate the differential ability of MARCH1 and -8 to restrict IAV infectivity, highlighting the critical role of the N-CT domain of each protein in modulating IAV restriction. Overall, these studies provide novel insights regarding the mechanisms by which MARCH proteins contribute to cell-intrinsic immunity against IAV.


Assuntos
Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Ubiquitina-Proteína Ligases/genética , Replicação Viral/genética , Animais , Cães , Regulação para Baixo , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/patogenicidade , Células Madin Darby de Rim Canino
10.
Clin Transl Immunology ; 10(4): e1269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841880

RESUMO

OBJECTIVES: Efforts to develop and deploy effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue at pace. Here, we describe rational antigen design through to manufacturability and vaccine efficacy of a prefusion-stabilised spike (S) protein, Sclamp, in combination with the licensed adjuvant MF59 'MF59C.1' (Seqirus, Parkville, Australia). METHODS: A panel recombinant Sclamp proteins were produced in Chinese hamster ovary and screened in vitro to select a lead vaccine candidate. The structure of this antigen was determined by cryo-electron microscopy and assessed in mouse immunogenicity studies, hamster challenge studies and safety and toxicology studies in rat. RESULTS: In mice, the Sclamp vaccine elicits high levels of neutralising antibodies, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells in vivo. In the Syrian hamster challenge model (n = 70), vaccination results in reduced viral load within the lung, protection from pulmonary disease and decreased viral shedding in daily throat swabs which correlated strongly with the neutralising antibody level. CONCLUSION: The SARS-CoV-2 Sclamp vaccine candidate is compatible with large-scale commercial manufacture, stable at 2-8°C. When formulated with MF59 adjuvant, it elicits neutralising antibodies and T-cell responses and provides protection in animal challenge models.

11.
Front Immunol ; 11: 887, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477358

RESUMO

Exosomes are extracellular vesicles secreted by cells that have an important biological function in intercellular communication by transferring biologically active proteins, lipids, and RNAs to neighboring or distant cells. While a role for exosomes in antimicrobial defense has recently emerged, currently very little is known regarding the nature and functional relevance of exosomes generated in vivo, particularly during an active viral infection. Here, we characterized exosomes released into the airways during influenza virus infection. We show that these vesicles dynamically change in protein composition over the course of infection, increasing expression of host proteins with known anti-influenza activity, and viral proteins with the potential to trigger host immune responses. We show that exosomes released into the airways during influenza virus infection trigger pulmonary inflammation and carry viral antigen that can be utilized by antigen presenting cells to drive the induction of a cellular immune response. Moreover, we show that attachment factors for influenza virus, namely α2,3 and α2,6-linked sialic acids, are present on the surface of airway exosomes and these vesicles have the ability to neutralize influenza virus, thereby preventing the virus from binding and entering target cells. These data reveal a novel role for airway exosomes in the antiviral innate immune defense against influenza virus infection.


Assuntos
Exossomos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Infecções por Orthomyxoviridae/imunologia , Sistema Respiratório/imunologia , Animais , Transporte Biológico , Exossomos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Orthomyxoviridae/imunologia , Orthomyxoviridae/fisiologia , Infecções por Orthomyxoviridae/virologia , Proteômica , Sistema Respiratório/virologia , Organismos Livres de Patógenos Específicos , Ligação Viral
12.
Viruses ; 9(12)2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215570

RESUMO

Viral infection of different cell types induces a unique spectrum of host defence genes, including interferon-stimulated genes (ISGs) and genes encoding other proteins with antiviral potential. Although hundreds of ISGs have been described, the vast majority have not been functionally characterised. Cellular proteins with putative antiviral activity (hereafter referred to as "restriction factors") can target various steps in the virus life-cycle. In the context of influenza virus infection, restriction factors have been described that target virus entry, genomic replication, translation and virus release. Genome wide analyses, in combination with ectopic overexpression and/or gene silencing studies, have accelerated the identification of restriction factors that are active against influenza and other viruses, as well as providing important insights regarding mechanisms of antiviral activity. Herein, we review current knowledge regarding restriction factors that mediate anti-influenza virus activity and consider the viral countermeasures that are known to limit their impact. Moreover, we consider the strengths and limitations of experimental approaches to study restriction factors, discrepancies between in vitro and in vivo studies, and the potential to exploit restriction factors to limit disease caused by influenza and other respiratory viruses.


Assuntos
Interações Hospedeiro-Patógeno , Fatores Imunológicos/metabolismo , Vírus da Influenza A/imunologia , Animais , Humanos
13.
PLoS Negl Trop Dis ; 10(7): e0004799, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27414047

RESUMO

Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.


Assuntos
Glicoproteínas/metabolismo , Infecções por Hantavirus/virologia , Orthohantavírus/fisiologia , Peptídeos/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Glicoproteínas/química , Glicoproteínas/genética , Orthohantavírus/química , Orthohantavírus/genética , Humanos , Peptídeos/química , Peptídeos/genética , Domínios Proteicos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA