Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(2): 102850, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587765

RESUMO

The family of small-conductance Ca2+-activated potassium ion channels (SK channels) is composed of four members (SK1, SK2, SK3, and SK4) involved in neuron-firing regulation. The gating of these channels depends on the intracellular Ca2+ concentration, and their sensitivity to this ion is provided by calmodulin (CaM). This protein binds to a specific region in SK channels known as the calmodulin-binding domain (CaMBD), an event which is essential for their gating. While CaMBDs are typically disordered in the absence of CaM, the SK2 channel subtype displays a small prefolded α-helical region in its CaMBD even if CaM is not present. This small helix is known to turn into a full α-helix upon CaM binding, although the molecular-level details for this conversion are not fully understood yet. In this work, we offer new insights on this physiologically relevant process by means of enhanced sampling, atomistic Hamiltonian replica exchange molecular dynamics simulations, providing a more detailed understanding of CaM binding to this target. Our results show that CaM is necessary for inducing a full α-helix along the SK2 CaMBD through hydrophobic interactions with V426 and L427. However, it is also necessary that W431 does not compete for these interactions; the role of the small prefolded α-helix in the SK2 CaMBD would be to stabilize W431 so that this is the case. In conclusion, our findings provide further insight into a key interaction between CaM and SK channels that is important for channel sensitivity to Ca2+.


Assuntos
Calmodulina , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Cálcio/metabolismo , Calmodulina/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474157

RESUMO

Despite the increasing availability of genomic data and enhanced data analysis procedures, predicting the severity of associated diseases remains elusive in the absence of clinical descriptors. To address this challenge, we have focused on the KV7.2 voltage-gated potassium channel gene (KCNQ2), known for its link to developmental delays and various epilepsies, including self-limited benign familial neonatal epilepsy and epileptic encephalopathy. Genome-wide tools often exhibit a tendency to overestimate deleterious mutations, frequently overlooking tolerated variants, and lack the capacity to discriminate variant severity. This study introduces a novel approach by evaluating multiple machine learning (ML) protocols and descriptors. The combination of genomic information with a novel Variant Frequency Index (VFI) builds a robust foundation for constructing reliable gene-specific ML models. The ensemble model, MLe-KCNQ2, formed through logistic regression, support vector machine, random forest and gradient boosting algorithms, achieves specificity and sensitivity values surpassing 0.95 (AUC-ROC > 0.98). The ensemble MLe-KCNQ2 model also categorizes pathogenic mutations as benign or severe, with an area under the receiver operating characteristic curve (AUC-ROC) above 0.67. This study not only presents a transferable methodology for accurately classifying KCNQ2 missense variants, but also provides valuable insights for clinical counseling and aids in the determination of variant severity. The research context emphasizes the necessity of precise variant classification, especially for genes like KCNQ2, contributing to the broader understanding of gene-specific challenges in the field of genomic research. The MLe-KCNQ2 model stands as a promising tool for enhancing clinical decision making and prognosis in the realm of KCNQ2-related pathologies.


Assuntos
Epilepsia Neonatal Benigna , Epilepsia Generalizada , Recém-Nascido , Humanos , Inteligência Artificial , Mutação de Sentido Incorreto , Mutação , Epilepsia Neonatal Benigna/genética , Canal de Potássio KCNQ2/genética
3.
BMC Biol ; 19(1): 109, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020651

RESUMO

BACKGROUND: The amino acid sequence of proteins generally carries all the necessary information for acquisition of native conformations, but the vectorial nature of translation can additionally determine the folding outcome. Such consideration is particularly relevant in human diseases associated to inherited mutations leading to structural instability, aggregation, and degradation. Mutations in the KCNQ2 gene associated with human epilepsy have been suggested to cause misfolding of the encoded Kv7.2 channel. Although the effect on folding of mutations in some domains has been studied, little is known of the way pathogenic variants located in the calcium responsive domain (CRD) affect folding. Here, we explore how a Kv7.2 mutation (W344R) located in helix A of the CRD and associated with hereditary epilepsy interferes with channel function. RESULTS: We report that the epilepsy W344R mutation within the IQ motif of CRD decreases channel function, but contrary to other mutations at this site, it does not impair the interaction with Calmodulin (CaM) in vitro, as monitored by multiple in vitro binding assays. We find negligible impact of the mutation on the structure of the complex by molecular dynamic computations. In silico studies revealed two orientations of the side chain, which are differentially populated by WT and W344R variants. Binding to CaM is impaired when the mutated protein is produced in cellulo but not in vitro, suggesting that this mutation impedes proper folding during translation within the cell by forcing the nascent chain to follow a folding route that leads to a non-native configuration, and thereby generating non-functional ion channels that fail to traffic to proper neuronal compartments. CONCLUSIONS: Our data suggest that the key pathogenic mechanism of Kv7.2 W344R mutation involves the failure to adopt a configuration that can be recognized by CaM in vivo but not in vitro.


Assuntos
Epilepsia , Canal de Potássio KCNQ2/genética , Sequência de Aminoácidos , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Epilepsia/genética , Humanos , Canal de Potássio KCNQ2/metabolismo , Mutação
4.
Proc Natl Acad Sci U S A ; 115(10): 2395-2400, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463698

RESUMO

The Kv7.2 (KCNQ2) channel is the principal molecular component of the slow voltage-gated, noninactivating K+ M-current, a key controller of neuronal excitability. To investigate the calmodulin (CaM)-mediated Ca2+ gating of the channel, we used NMR spectroscopy to structurally and dynamically describe the association of helices hA and hB of Kv7.2 with CaM, as a function of Ca2+ concentration. The structures of the CaM/Kv7.2-hAB complex at two different calcification states are reported here. In the presence of a basal cytosolic Ca2+ concentration (10-100 nM), only the N-lobe of CaM is Ca2+-loaded and the complex (representative of the open channel) exhibits collective dynamics on the millisecond time scale toward a low-populated excited state (1.5%) that corresponds to the inactive state of the channel. In response to a chemical or electrical signal, intracellular Ca2+ levels rise up to 1-10 µM, triggering Ca2+ association with the C-lobe. The associated conformational rearrangement is the key biological signal that shifts populations to the closed/inactive channel. This reorientation affects the C-lobe of CaM and both helices in Kv7.2, allosterically transducing the information from the Ca2+-binding site to the transmembrane region of the channel.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Canal de Potássio KCNQ2 , Animais , Cálcio/química , Calmodulina/química , Bovinos , Células HEK293 , Humanos , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ2/fisiologia , Conformação Proteica , Eletricidade Estática , Termodinâmica
5.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075037

RESUMO

Intracellular calcium is essential for many physiological processes, from neuronal signaling and exocytosis to muscle contraction and bone formation. Ca2+ signaling from the extracellular medium depends both on membrane potential, especially controlled by ion channels selective to K+, and direct permeation of this cation through specialized channels. Calmodulin (CaM), through direct binding to these proteins, participates in setting the membrane potential and the overall permeability to Ca2+. Over the past years many structures of complete channels in complex with CaM at near atomic resolution have been resolved. In combination with mutagenesis-function, structural information of individual domains and functional studies, different mechanisms employed by CaM to control channel gating are starting to be understood at atomic detail. Here, new insights regarding four types of tetrameric channels with six transmembrane (6TM) architecture, Eag1, SK2/SK4, TRPV5/TRPV6 and KCNQ1-5, and its regulation by CaM are described structurally. Different CaM regions, N-lobe, C-lobe and EF3/EF4-linker play prominent signaling roles in different complexes, emerging the realization of crucial non-canonical interactions between CaM and its target that are only evidenced in the full-channel structure. Different mechanisms to control gating are used, including direct and indirect mechanical actuation over the pore, allosteric control, indirect effect through lipid binding, as well as direct plugging of the pore. Although each CaM lobe engages through apparently similar alpha-helices, they do so using different docking strategies. We discuss how this allows selective action of drugs with great therapeutic potential.


Assuntos
Calmodulina/metabolismo , Canais Iônicos/metabolismo , Regulação Alostérica , Sinalização do Cálcio , Calmodulina/química , Humanos , Canais Iônicos/química , Canais de Potássio/química , Canais de Potássio/metabolismo , Domínios Proteicos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo
6.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585800

RESUMO

Complex neurodevelopmental syndromes frequently have an unknown etiology, in which genetic factors play a pathogenic role. This study utilizes whole-exome sequencing (WES) to examine four members of a family with a son presenting, since birth, with epileptic-like crises, combined with cerebral palsy, severe neuromotor and developmental delay, dystonic tetraparexia, axonal motor affectation, and hyper-excitability of unknown origin. The WES study detected within the patient a de novo heterozygous in-frame duplication of thirty-six nucleotides within exon 7 of the human KCNQ2 gene. This insertion duplicates the first twelve amino acids of the calmodulin binding site I. Molecular dynamics simulations of this KCNQ2 peptide duplication, modelled on the 3D structure of the KCNQ2 protein, suggest that the duplication may lead to the dysregulation of calcium inhibition of this protein function.


Assuntos
Deficiências do Desenvolvimento/patologia , Síndromes Epilépticas/patologia , Éxons , Duplicação Gênica , Canal de Potássio KCNQ2/genética , Mutação , Transtornos do Neurodesenvolvimento/patologia , Criança , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Síndromes Epilépticas/complicações , Síndromes Epilépticas/genética , Humanos , Masculino , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Prognóstico
7.
Epilepsia ; 60(1): 139-148, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478917

RESUMO

OBJECTIVE: To gain insight into the mechanisms underlying KCNQ2 encephalopathy by examining the electrophysiologic properties of mutant Kv7.2 channels in different multimeric configurations. METHODS: We analyzed the genotype-phenotype relationship in 4 patients with KCNQ2 encephalopathy and performed electrophysiologic analysis of M-currents mediated by homomeric Kv7.2 or heteromeric Kv7.2/Kv7.3 channels. RESULTS: Negligible or no current was recorded in cells expressing homomeric E130K, W270R, or G281R de novo mutants, and it was reduced by more than 90% for the L243F maternally inherited mutant. The E130K and G281R mutants presented a marked dominant-negative behavior, whereas the current density was partially reduced (L243F) or not affected (W270R) when coexpressed with wild-type Kv7.2 subunits. In contrast, the extent of Kv7.3 "rescue," which yields negligible currents on its own, followed the sequence E130K > L243F > W270R, whereas no rescue was observed with the G281R mutant. No significant effects on current density were observed when subunits were expressed in a 0.5:0.5:1.0 (Kv7.2:mutant:Kv7.3) DNA ratio to mimic the genetic balance. There was an increase in sensitivity to phosphatidylinositol 4,5-bisphosphate (PIP2 ) depletion for W270R/Kv7.3, but no substantial differences were observed when the mutated subunits were coexpressed with Kv7.2 or both Kv7.2 and Kv7.3. SIGNIFICANCE: There was a marked disparity of the impact of these mutations on Kv7.2 function, which varied on association with Kv7.2 or Kv7.3 subunits. Current density of homomeric channels was the most reliable property relating Kv7.2 function to encephalopathy, but other factors are required to explain the milder phenotype for some individuals carrying the maternally inherited L243F mutation. We hypothesize that the role of homomeric Kv7.2 channels for fine-tuning neuronal connections during development is critical for the severity of the KCNQ2 encephalopathy.


Assuntos
Encefalopatias/diagnóstico , Encefalopatias/genética , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Canal de Potássio KCNQ2/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Canal de Potássio KCNQ2/química , Masculino , Linhagem , Estrutura Secundária de Proteína
8.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669290

RESUMO

Calmodulin (CaM) is the principal Ca2+ sensor in eukaryotic cells, orchestrating the activity of hundreds of proteins. Disease causing mutations at any of the three genes that encode identical CaM proteins lead to major cardiac dysfunction, revealing the importance in the regulation of excitability. In turn, some mutations at the CaM binding site of ion channels cause similar diseases. Here we provide a summary of the two sides of the partnership between CaM and ion channels, describing the diversity of consequences of mutations at the complementary CaM binding domains.


Assuntos
Calmodulina/genética , Calmodulina/metabolismo , Suscetibilidade a Doenças , Canais Iônicos/genética , Canais Iônicos/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/química , Regulação da Expressão Gênica , Humanos , Ativação do Canal Iônico , Canais Iônicos/química , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Sensibilidade e Especificidade , Transdução de Sinais , Relação Estrutura-Atividade
9.
J Biol Chem ; 291(36): 19132-45, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27445338

RESUMO

Ubiquitination of the TrkA neurotrophin receptor in response to NGF is critical in the regulation of TrkA activation and functions. TrkA is ubiquitinated, among other E3 ubiquitin ligases, by Nedd4-2. To understand mechanistically how TrkA ubiquitination is regulated, we performed a siRNA screening to identify deubiquitinating enzymes and found that USP36 acts as an important regulator of TrkA activation kinetics and ubiquitination. However, USP36 action on TrkA was indirect because it does not deubiquitinate TrkA. Instead, USP36 binds to Nedd4-2 and regulates the association of TrkA and Nedd4-2. In addition, depletion of USP36 increases TrkA·Nedd4-2 complex formation, whereas USP36 expression disrupts the complex, resulting in an enhancement or impairment of Nedd4-2-dependent TrkA ubiquitination, respectively. Moreover, USP36 depletion leads to enhanced total and surface TrkA expression that results in increased NGF-mediated TrkA activation and signaling that augments PC12 cell differentiation. USP36 actions extend beyond TrkA because the presence of USP36 interferes with Nedd4-2-dependent Kv7.2/3 channel regulation. Our results demonstrate that USP36 binds to and regulates the actions of Nedd4-2 over different substrates affecting their expression and functions.


Assuntos
Diferenciação Celular/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação da Expressão Gênica/fisiologia , Canal de Potássio KCNQ2/biossíntese , Canal de Potássio KCNQ3/biossíntese , Células-Tronco Neurais/metabolismo , Receptor trkA/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HEK293 , Humanos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Células-Tronco Neurais/citologia , Células PC12 , Ligação Proteica , Ratos , Receptor trkA/genética , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/genética
10.
J Cell Sci ; 128(21): 4014-23, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26359296

RESUMO

We show that the combination of an intracellular bi-partite calmodulin (CaM)-binding site and a distant assembly region affect how an ion channel is regulated by a membrane lipid. Our data reveal that regulation by phosphatidylinositol(4,5)bisphosphate (PIP2) and stabilization of assembled Kv7.2 subunits by intracellular coiled-coil regions far from the membrane are coupled molecular processes. Live-cell fluorescence energy transfer measurements and direct binding studies indicate that remote coiled-coil formation creates conditions for different CaM interaction modes, each conferring different PIP2 dependency to Kv7.2 channels. Disruption of coiled-coil formation by epilepsy-causing mutation decreases apparent CaM-binding affinity and interrupts CaM influence on PIP2 sensitivity.


Assuntos
Calmodulina/metabolismo , Canal de Potássio KCNQ2/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Calmodulina/genética , Linhagem Celular , Humanos , Canal de Potássio KCNQ2/genética , Mutação/genética , Ligação Proteica
11.
J Cell Sci ; 128(16): 3155-63, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26148514

RESUMO

Calmodulin (CaM) binding to the AB module is crucial for multiple mechanisms governing the function of Kv7.2 (also known as KCNQ2) K(+) channel subunits, which mediate one of the main components of the non-inactivating K(+) M-current, a key controller of neuronal excitability. Structural analysis indicates that the CaM N-lobe engages with helix B, whereas the C-lobe anchors to the IQ site within helix A. Here, we report the identification of a new site between helices A and B that assists in CaM binding whose sequence is reminiscent of the TW helix within the CaM C-lobe anchoring site of SK2 K(+) channels (also known as KCNN2). Mutations that disrupt CaM binding within the TW site, helix B or helix A yield functional channels, whereas no function is observed when the TW site and helix A, or the TW site and helix B are mutated simultaneously. Our data indicate that the TW site is dispensable for function, contributes to the stabilization of the CaM-Kv7.2 complex and becomes essential when docking to either helix A or when helix B is perturbed.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Canal de Potássio KCNQ2/química , Relação Estrutura-Atividade , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/química , Calmodulina/genética , Calmodulina/metabolismo , Células HEK293 , Humanos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Simulação de Acoplamento Molecular , Mutação , Neurônios/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína
12.
Biochim Biophys Acta ; 1852(9): 1856-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26073431

RESUMO

Mutations in the KCNQ2 gene, encoding for voltage-gated Kv7.2K(+) channel subunits, are responsible for early-onset epileptic diseases with widely-diverging phenotypic presentation, ranging from Benign Familial Neonatal Seizures (BFNS) to epileptic encephalopathy. In the present study, Kv7.2 BFNS-causing mutations (W344R, L351F, L351V, Y362C, and R553Q) have been investigated for their ability to interfere with calmodulin (CaM) binding and CaM-induced channel regulation. To this aim, semi-quantitative (Far-Western blotting) and quantitative (Surface Plasmon Resonance and dansylated CaM fluorescence) biochemical assays have been performed to investigate the interaction of CaM with wild-type or mutant Kv7.2 C-terminal fragments encompassing the CaM-binding domain; in parallel, mutation-induced changes in CaM-dependent Kv7.2 or Kv7.2/Kv7.3 current regulation were investigated by patch-clamp recordings in Chinese Hamster Ovary (CHO) cells co-expressing Kv7.2 or Kv7.2/Kv7.3 channels and CaM or CaM1234 (a CaM isoform unable to bind Ca(2+)). The results obtained suggest that each BFNS-causing mutation prompts specific biochemical and/or functional consequences; these range from slight alterations in CaM affinity which did not translate into functional changes (L351V), to a significant reduction in the affinity and functional modulation by CaM (L351F, Y362C or R553Q), to a complete functional loss without significant alteration in CaM affinity (W344R). CaM overexpression increased Kv7.2 and Kv7.2/Kv7.3 current levels, and partially (R553Q) or fully (L351F) restored normal channel function, providing a rationale pathogenetic mechanism for mutation-induced channel dysfunction in BFNS, and highlighting the potentiation of CaM-dependent Kv7.2 modulation as a potential therapeutic approach for Kv7.2-related epilepsies.

13.
J Cell Sci ; 126(Pt 1): 244-53, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23203804

RESUMO

Among the multiple roles assigned to calmodulin (CaM), controlling the surface expression of Kv7.2 channels by binding to two discontinuous sites is a unique property of this Ca(2+) binding protein. Mutations that interfere with CaM binding or the sequestering of CaM prevent this M-channel component from exiting the endoplasmic reticulum (ER), which reduces M-current density in hippocampal neurons, enhancing excitability and offering a rational mechanism to explain some forms of benign familial neonatal convulsions (BFNC). Previously, we identified a mutation (S511D) that impedes CaM binding while allowing the channel to exit the ER, hinting that CaM binding may not be strictly required for Kv7.2 channel trafficking to the plasma membrane. Alternatively, this interaction with CaM might escape detection and, indeed, we now show that the S511D mutant contains functional CaM-binding sites that are not detected by classical biochemical techniques. Surface expression and function is rescued by CaM, suggesting that free CaM in HEK293 cells is limiting and reinforcing the hypothesis that CaM binding is required for ER exit. Within the CaM-binding domain formed by two sites (helix A and helix B), we show that CaM binds to helix B with higher apparent affinity than helix A, both in the presence and absence of Ca(2+), and that the two sites cooperate. Hence, CaM can bridge two binding domains, anchoring helix A of one subunit to helix B of another subunit, in this way influencing the function of Kv7.2 channels.


Assuntos
Calmodulina/metabolismo , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/metabolismo , Sítios de Ligação , Calmodulina/genética , Eletrofisiologia , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Canal de Potássio KCNQ2/genética , Mutação , Ligação Proteica/genética , Ligação Proteica/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 34(7): 1522-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24855057

RESUMO

OBJECTIVE: Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. APPROACH AND RESULTS: Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. CONCLUSIONS: Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension.


Assuntos
Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ1/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Potássio/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Canais de Potássio KCNQ/química , Canais de Potássio KCNQ/efeitos dos fármacos , Canais de Potássio KCNQ/genética , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Microdomínios da Membrana/metabolismo , Potenciais da Membrana , Músculo Liso Vascular/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Estrutura Quaternária de Proteína , Ratos , Transfecção , Xenopus
15.
J Neurosci ; 33(6): 2684-96, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23392695

RESUMO

The M-current formed by tetramerization of Kv7.2 and Kv7.3 subunits is a neuronal voltage-gated K(+) conductance that controls resting membrane potential and cell excitability. In Xenopus laevis oocytes, an increase in Kv7.2/3 function by the serum- and glucocorticoid-regulated kinase 1 (SGK1) has been reported previously (Schuetz et al., 2008). We now show that the neuronal isoform of this kinase (SGK1.1), with distinct subcellular localization and modulation, upregulates the Kv7.2/3 current in Xenopus oocytes and mammalian human embryonic kidney HEK293 cells. In contrast to the ubiquitously expressed SGK1, the neuronal isoform SGK1.1 interacts with phosphoinositide-phosphatidylinositol 4,5-bisphosphate (PIP(2)) and is distinctly localized to the plasma membrane (Arteaga et al., 2008). An SGK1.1 mutant with disrupted PIP(2) binding sites produced no effect on Kv7.2/3 current amplitude. SGK1.1 failed to modify the voltage dependence of activation and did not change activation or deactivation kinetics of Kv7.2/3 channels. These results suggest that the kinase increases channel membrane abundance, which was confirmed with flow cytometry assays. To evaluate the effect of the kinase in neuronal excitability, we generated a transgenic mouse (Tg.sgk) expressing a constitutively active form of SGK1.1 (S515D). Superior cervical ganglion (SCG) neurons isolated from Tg.sgk mice showed a significant increase in M-current levels, paralleled by reduced excitability and more negative resting potentials. SGK1.1 effect on M-current in Tg.sgk-SCG neurons was counteracted by muscarinic receptor activation. Transgenic mice with increased SGK1.1 activity also showed diminished sensitivity to kainic acid-induced seizures. Altogether, our results unveil a novel role of SGK1.1 as a physiological regulator of the M-current and neuronal excitability.


Assuntos
Proteínas Imediatamente Precoces/biossíntese , Neurônios/enzimologia , Proteínas Serina-Treonina Quinases/biossíntese , Convulsões/enzimologia , Convulsões/prevenção & controle , Regulação para Cima/fisiologia , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Xenopus laevis
16.
Org Biomol Chem ; 12(44): 8877-87, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25264745

RESUMO

The recombinant Kv7.2 calmodulin (CaM) binding site (Q2AB CaMBD) shows a high tendency to aggregate, thus complicating biochemical and structural studies. To facilitate these studies we have conceived bis-PEG-peptide CaMBD-mimetics linking helices A and B in single, easy to handle molecules. Short PEG chains were selected as spacers between the two peptide molecules, and a Cu(i)-catalyzed cycloaddition (CuAAC) protocol was used to assemble the final bis-PEG-peptide conjugate, by the convenient functionalization of PEG arms with azide and alkyne groups. The resulting conjugates, with a certain helical character in TFE solutions (CD), showed nanomolar affinity in a fluorescence CaM binding in vitro assay, higher than just the sum of the precursor PEG-peptide affinities, thus validating our design. The approach to these first described examples of Kv7.2 CaMBD-mimetics could pave the way to chimeric conjugates merging helices A and B from different Kv7 subunits.


Assuntos
Calmodulina/química , Peptídeos/química , Polietilenoglicóis/química , Sítios de Ligação , Química Click , Conformação Molecular
17.
Bio Protoc ; 14(7): e4963, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38618173

RESUMO

The assessment of peptide-protein interactions is a pivotal aspect of studying the functionality and mechanisms of various bioactive peptides. In this context, it is essential to employ methods that meet specific criteria, including sensitivity, biocompatibility, versatility, simplicity, and the ability to offer real-time monitoring. In cellular contexts, only a few proteins naturally possess inherent fluorescence, specifically those containing aromatic amino acids, particularly tryptophan. Nonetheless, by covalently attaching fluorescent markers, almost all proteins can be modified for monitoring purposes. Among the early extrinsic fluorescent probes designed for this task, dansyl chloride (DNSC) is a notable option due to its versatile nature and reliable performance. DNSC has been the primary choice as a fluorogenic derivatizing reagent for analyzing amino acids in proteins and peptides for an extended period of time. In our work, we have effectively utilized the distinctive properties of dansylated-calmodulin (D-CaM) for monitoring the interaction dynamics between proteins and peptides, particularly in the context of their association with calmodulin (CaM), a calcium-dependent regulatory protein. This technique not only enables us to scrutinize the affinity of diverse ligands but also sheds light on the intricate role played by calcium in these interactions. Key features • Dynamic fluorescence and real-time monitoring: dansyl-modified CaM enables sensitive, real-time fluorescence, providing valuable insights into the dynamics of molecular interactions and ligand binding. • Selective interaction and stable fluorescent adducts: DNSC selectively interacts with primary amino groups, ensuring specific detection and forming stable fluorescent sulfonamide adducts. • Versatility in research and ease of identification: D-CaM is a versatile tool in biological research, facilitating identification, precise quantification, and drug assessment for therapeutic development. • Sensitivity to surrounding alterations: D-CaM exhibits sensitivity to its surroundings, particularly ligand-induced changes, offering subtle insights into molecular interactions and environmental influences.

18.
Biomed Pharmacother ; 174: 116602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636396

RESUMO

The development of new molecules for the treatment of calmodulin related cardiovascular or neurodegenerative diseases is an interesting goal. In this work, we introduce a novel strategy with four main steps: (1) chemical synthesis of target molecules, (2) Förster Resonance Energy Transfer (FRET) biosensor development and in vitro biological assay of new derivatives, (3) Cheminformatics models development and in vivo activity prediction, and (4) Docking studies. This strategy is illustrated with a case study. Firstly, a series of 4-substituted Riluzole derivatives 1-3 were synthetized through a strategy that involves the construction of the 4-bromoriluzole framework and its further functionalization via palladium catalysis or organolithium chemistry. Next, a FRET biosensor for monitoring Ca2+-dependent CaM-ligands interactions has been developed and used for the in vitro assay of Riluzole derivatives. In particular, the best inhibition (80%) was observed for 4-methoxyphenylriluzole 2b. Besides, we trained and validated a new Networks Invariant, Information Fusion, Perturbation Theory, and Machine Learning (NIFPTML) model for predicting probability profiles of in vivo biological activity parameters in different regions of the brain. Next, we used this model to predict the in vivo activity of the compounds experimentally studied in vitro. Last, docking study conducted on Riluzole and its derivatives has provided valuable insights into their binding conformations with the target protein, involving calmodulin and the SK4 channel. This new combined strategy may be useful to reduce assay costs (animals, materials, time, and human resources) in the drug discovery process of calmodulin inhibitors.


Assuntos
Técnicas Biossensoriais , Calmodulina , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores , Riluzol , Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Técnicas Biossensoriais/métodos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Riluzol/farmacologia , Riluzol/síntese química , Riluzol/química , Transferência Ressonante de Energia de Fluorescência , Animais , Humanos , Aprendizado de Máquina
19.
J Biol Chem ; 287(15): 11870-7, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22334706

RESUMO

Voltage-gated K(+) channels composed of Kv7.2 and Kv7.3 are the predominant contributors to the M-current, which plays a key role in controlling neuronal activity. Various lines of evidence have indicated that Kv7.2 and Kv7.3 form a heteromeric channel. However, the subunit stoichiometry and arrangement within this putative heteromer are so far unknown. Here, we have addressed this question using atomic force microscopy imaging of complexes between isolated Kv7.2/Kv7.3 channels and antibodies to epitope tags on the two subunits, Myc on Kv7.2 and HA on Kv7.3. Initially, tsA 201 cells were transiently transfected with equal amounts of cDNA for the two subunits. The heteromer was isolated through binding of either tag to immunoaffinity beads and then decorated with antibodies to the other tag. In both cases, the distribution of angles between pairs of bound antibodies had two peaks, at around 90° and around 180°, and in both cases the 90° peak was about double the size of the 180° peak. These results indicate that the Kv7.2/Kv7.3 heteromer generated by cells expressing approximately equal amounts of the two subunits assembles as a tetramer with a predominantly 2:2 subunit stoichiometry and with a random subunit arrangement. When the DNA ratio for the two subunits was varied, copurification experiments indicated that the subunit stoichiometry was variable and not fixed at 2:2. Hence, there are no constraints on either the subunit stoichiometry or the subunit arrangement.


Assuntos
Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Multimerização Proteica , Linhagem Celular , Humanos , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/isolamento & purificação , Canal de Potássio KCNQ3/química , Canal de Potássio KCNQ3/isolamento & purificação , Microscopia de Força Atômica , Microscopia Confocal , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
20.
Elife ; 122023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803414

RESUMO

Neuronal KV7 channels, important regulators of cell excitability, are among the most sensitive proteins to reactive oxygen species. The S2S3 linker of the voltage sensor was reported as a site-mediating redox modulation of the channels. Recent structural insights reveal potential interactions between this linker and the Ca2+-binding loop of the third EF-hand of calmodulin (CaM), which embraces an antiparallel fork formed by the C-terminal helices A and B, constituting the calcium responsive domain (CRD). We found that precluding Ca2+ binding to the EF3 hand, but not to EF1, EF2, or EF4 hands, abolishes oxidation-induced enhancement of KV7.4 currents. Monitoring FRET (Fluorescence Resonance Energy Transfer) between helices A and B using purified CRDs tagged with fluorescent proteins, we observed that S2S3 peptides cause a reversal of the signal in the presence of Ca2+ but have no effect in the absence of this cation or if the peptide is oxidized. The capacity of loading EF3 with Ca2+ is essential for this reversal of the FRET signal, whereas the consequences of obliterating Ca2+ binding to EF1, EF2, or EF4 are negligible. Furthermore, we show that EF3 is critical for translating Ca2+ signals to reorient the AB fork. Our data are consistent with the proposal that oxidation of cysteine residues in the S2S3 loop relieves KV7 channels from a constitutive inhibition imposed by interactions between the EF3 hand of CaM which is crucial for this signaling.


Assuntos
Calmodulina , Canais de Potássio , Transdução de Sinais , Cálcio/metabolismo , Calmodulina/metabolismo , Oxirredução , Estrutura Secundária de Proteína , Canais de Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA