Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570557

RESUMO

Neurocysticercosis is caused by the establishment of Taenia solium cysts in the central nervous system. Murine cysticercosis by Taenia crassiceps is a useful model of cysticercosis in which the complement component 5 (C5) has been linked to infection resistance/permissiveness. This work aimed to study the possible relevance for human neurocysticercosis of single nucleotide polymorphisms (SNPs) in the C5-TRAF1 region (rs17611 C/T, rs992670 G/A, rs25681 G/A, rs10818488 A/G, and rs3761847 G/A) in a Mexican population and associated with clinical and radiological traits related to neurocysticercosis severity (cell count in the cerebrospinal fluid [CSF cellularity], parasite location and parasite load in the brain, parasite degenerating stage, and epilepsy). The AG genotype of the rs3761847 SNP showed a tendency to associate with multiple brain parasites, while the CT and GG genotypes of the rs17611 and rs3761847 SNPs, respectively, showed a tendency to associate with low CSF cellularity. The rs3761847 SNP was associated with epilepsy under a dominant model, whereas rs10818488 was associated with CSF cellularity and parasite load under dominant and recessive models, respectively. For haplotypes, C5- and the TRAF1-associated SNPs were, respectively, in strong linkage disequilibrium with each other; thus, these haplotypes were studied independently. For C5 SNPs, carrying the CAA haplotype increases the risk of showing high CSF cellularity 3-fold and the risk of having extraparenchymal parasites 4-fold, two conditions that are related to severe disease. For TRAF1 SNPs, the GA and AG haplotypes were associated with CSF cellularity, and the AG haplotype was associated with epilepsy. Overall, these findings support the clear participation of C5 and TRAF1 in the risk of developing severe neurocysticercosis in the Mexican population.


Assuntos
Complemento C5/genética , Epilepsia/parasitologia , Predisposição Genética para Doença/genética , Neurocisticercose/genética , Fator 1 Associado a Receptor de TNF/genética , Adolescente , Adulto , Idoso , Animais , Encéfalo/parasitologia , Líquido Cefalorraquidiano/parasitologia , Epilepsia/genética , Feminino , Haplótipos/genética , Humanos , Masculino , México , Pessoa de Meia-Idade , Neurocisticercose/parasitologia , Carga Parasitária , Polimorfismo de Nucleotídeo Único/genética , Taenia solium/patogenicidade , Adulto Jovem
2.
Microorganisms ; 11(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37110321

RESUMO

BACKGROUND: Bacteria are capable of responding to various stressors, something which has been essential for their adaptation, evolution, and colonization of a wide range of environments. Of the many stressors affecting bacteria, we can highlight heavy metals, and amongst these, copper stands out for its great antibacterial capacity. Using Mycobacterium tuberculosis (Mtb) as a model, the action of proteins involved in copper homeostasis has been put forward as an explanation for the tolerance or adaptive response of this mycobacteria to the toxic action of copper. Therefore, the aim of this study was to confirm the presence and evaluate the expression of genes involved in copper homeostasis at the transcriptional level after challenging Mycobacterium avium subsp. paratuberculoisis (MAP) with copper ions. METHODOLOGY: Buffer inoculated with MAP was treated with two stressors, the presence of copper homeostasis genes was confirmed by bioinformatics and genomic analysis, and the response of these genes to the stressors was evaluated by gene expression analysis, using qPCR and the comparative ΔΔCt method. RESULTS: Through bioinformatics and genomic analysis, we found that copper homeostasis genes were present in the MAP genome and were overexpressed when treated with copper ions, which was not the case with H2O2 treatment. CONCLUSION: These results suggest that genes in MAP that code for proteins involved in copper homeostasis trigger an adaptive response to copper ions.

3.
Braz J Microbiol ; 54(1): 407-413, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36572823

RESUMO

Copper causes significant damage to the integrity of many bacteria, mainly at the DNA level, through its redox states, as well as its reactive oxygen species (ROS) generating capacity at the cellular level. But whether these mechanisms also apply to Mycobacterium avium subsp. paratuberculosis (MAP) is unknown. In the present study, we have evaluated whether copper ions produce damage at the DNA level of MAP, either through their redox states or through ROS production. MAP-spiked PBS was first supplemented with different copper chelators (2) and ROS antioxidants (3), followed by treatment with copper ions at 942 ppm. MAP DNA integrity (qPCR, magnetic phage separation) was then evaluated. We found that bathocuproine (BCS), as a chelator, and D-mannitol, as an antioxidant of hydroxyl radicals, had a significant protective effect (P < 0.05) on DNA molecules, and that EDTA, as a chelator, and D-mannitol, as an antioxidant had a significant positive effect (P < 0.05) on the viability of this pathogen in contrast to the control and other chelators and anti-oxidants used. In light of the reported findings, it may be concluded that copper ions within MAP cells are directly related to MAP DNA damage.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/microbiologia , Cobre , Antioxidantes , Espécies Reativas de Oxigênio
4.
Microorganisms ; 10(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422342

RESUMO

BACKGROUND: Mycobacterium avium subsp. paratuberculosis (MAP) is the causal agent of paratuberculosis. This pathogen is able to survive adverse environmental conditions, including the pasteurization process. Copper, a well-studied metal, is considered an important antibacterial tool, since it has been shown to inactivate even MAP in treated milk through unknown mechanisms. The aim of the present study is to show the effect of copper ions, and reactive oxygen species (ROS) generated in response to oxidative stress, on the damage to MAP DNA when exposed to a copper ion challenge in cow's milk. METHODOLOGY: Spiked milk with different MAP bacterial loads was supplemented with blocking agents. These were either the copper chelators ethylenediaminetetraacetic acid (EDTA) and batocuproin (BCS) or the ROS quenchers D-mannitol, gallic acid and quercetin. The DNA protection, MAP viability and ROS production generated after exposure to a copper challenge were then measured. RESULTS: In a bacterial load of 104 cells mL-1, blocking effects by both the copper chelators and all the ROS quenchers offered significant protection to MAP DNA. In a concentration of 102 cells mL-1, only D-mannitol and a mix of quenchers significantly protected the viability of the bacteria, and only at a concentration of 106 cells mL-1 was there a lower production of ROS when supplementing milk with gallic acid, quercetin and the mix of quenchers. CONCLUSION: Based on these findings, it may be concluded that MAP DNA damage can be attributed to the combined effect of the direct copper ions and ROS generated. Nevertheless, taking into account the antioxidant environment that milk provides, the direct effect of copper could play a prominent role.

5.
Vet Microbiol ; 268: 109412, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35395544

RESUMO

Copper and its alloys are natural and very well-proven antimicrobial materials. The mechanisms of action through which copper is highly effective have been described at the molecular and cellular level. However, both the design of the studies carried out and the nature of the microorganisms studied have meant that this research has been of limited scope. In the present study, we examined the action mechanisms of a copper ion treatment on the integrity of Mycobacterium avium subsp. paratuberculosis (MAP), a highly resistant animal pathogen. The copper ion treatment applied to MAP cells, resulted in nucleic acid degradation and disintegration, increased ROS production and protein alteration. However, the observed susceptibility of MAP to copper-based treatment was dose-dependent. Finally, it had no effect on the integrity of the MAP cell wall. This new evidence about the observed tolerance in the MAP cell wall against the copper ions, may help us to understand how we can improve the proposed copper-based treatment, and finally achieve a totally effective alternative to control MAP in calf´s milk.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Antibacterianos/farmacologia , Cobre/farmacologia , Íons , Paratuberculose/tratamento farmacológico , Paratuberculose/microbiologia
6.
Pathogens ; 11(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215214

RESUMO

BACKGROUND: Scientific evidence is scarce for the antimicrobial effect of copper on bacteria characterized as more resistant. Using Mycobacterium avium subsp. paratuberculosis (MAP), a highly resistant microorganism, as a pathogen model, copper ion treatment has shown a significant bactericidal effect; however, the sustainability of MAP against copper toxicity was also reported in several studies. Accordingly, the present study aimed to evaluate the impacts of copper on MAP. METHODOLOGY: This study considered physicochemical properties and copper concentration in a buffer since it could modulate MAP response during the application of copper treatment. RESULTS: Despite the efficacy of copper ions in significantly reducing the MAP load in Phosphate Buffered Saline, some MAP cells were able to survive. The copper concentration generated by the copper ion treatment device increased significantly with increasing exposure times. MAP bacterial load decreased significantly when treated with copper ions as the exposure times increased. An increase in pH decreased oxygen consumption, and an increase in conductivity was reported after treatment application. CONCLUSIONS: Even with higher concentrations of copper, the efficacy of MAP control was not complete. The concentration of copper must be a key element in achieving control of highly resistant microorganisms.

7.
Insects ; 12(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922048

RESUMO

The European grapevine moth, a Palearctic pest, was first detected in the Americas in 2008. Its establishment in Chile presented production and export issues for grapes and other fruits, and a national control campaign was launched. Urban areas next to agricultural production areas were recognized as a challenge for effective control. In 2015, a SIT laboratory was established in Arica, Chile to evaluate its potential for urban control. Progress included the development and evaluation of artificial diets, a mass-rearing of 75,000 moths/week, confirmation of 150 Gy as an operational dose for inherited sterility, and releases of sterile moths in a 25 ha urban area next to fruit production areas. Season-long releases demonstrated that high overflooding ratios were achieved early in the season but decreased with a large increase in the wild moth population. Sterile moth quality was consistently high, and moths were observed living in the field up to 10 days and dispersing up to 800 m. Recommendations for further development of the SIT include conducting cage and field studies to evaluate overflooding ratios and mating competitiveness, measuring of infestation densities in release and no-release areas, and conducting trials to evaluate combining SIT with compatible integrated pest management (IPM) tactics such as fruit stripping and use of mating disruption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA