Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 91(1): 792-796, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30525480

RESUMO

This paper reports the first results of a robust, high-performance, stainless-steel microchip gas-chromatography (GC) column that is capable of analyzing complex real-world mixtures as well as operating at very high temperatures. Using a serpentine design, a 10 m column with an approximately semicircular cross-section with a 52 µm hydraulic diameter ( Dh) was produced in a 17 × 6.3 × 0.1 cm rectangular steel chip. The channels were produced using a multilayer-chemical-etch and diffusion-bonding process, and metal nuts were brazed onto the inlet and outlet ports allowing for column interfacing with ferrules and fused silica capillary tubing. After deactivating the metal surface, channels were statically coated with a ≈0.1 µm layer of 5% phenyl-1% vinyl-methylpolysiloxane (SE-54) stationary phase and cross-linked with dicumyl peroxide. By using n-tridecane ( n-C13) as a test analyte with a retention factor ( k) of 5, a total of 44 500 plates (≈4500 plates per meter) was obtained isothermally at 120 °C. The column was thermally stable to at least 350 °C, and rapid temperature programming (35 °C/min) was demonstrated for the boiling-point range from n-C5 to n-C44 (ASTM D2887 simulated-distillation standard). The column was also tested for separation of two complex mixtures: gasoline headspace and kerosene. These initial experiments demonstrate that the planar stainless-steel column with proper interfacing can be a viable alternative platform for portable, robust microchip GC that is capable of high-temperature operation for low-volatility-compound analysis.

2.
Talanta ; 188: 463-492, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029402

RESUMO

Almost four decades of investigations have opened up many avenues to explore the production and utilization of planar (i.e., microchip) gas chromatographic columns. However, there remain many practical constraints that limit their widespread commercialization and use. The main challenges arise from non-ideal column geometries, dead volume issues and inadequate interfacing technologies, which all affect both column performance and range of applications. This review reflects back over the years on the extensive developments in the field, with the goal to stimulate future creative approaches and increased efforts to accelerate microchip gas chromatography development toward reaching its full potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA