Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Exp Immunol ; 166(1): 1-15, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21762124

RESUMO

While interleukin (IL)-1ß plays an important role in combating the invading pathogen as part of the innate immune response, its dysregulation is responsible for a number of autoinflammatory disorders. Large IL-1ß activating platforms, known as inflammasomes, can assemble in response to the detection of endogenous host and pathogen-associated danger molecules. Formation of these protein complexes results in the autocatalysis and activation of caspase-1, which processes precursor IL-1ß into its secreted biologically active form. Inflammasome and IL-1ß activity is required to efficiently control viral, bacterial and fungal pathogen infections. Conversely, excess IL-1ß activity contributes to human disease, and its inhibition has proved therapeutically beneficial in the treatment of a spectrum of serious, yet relatively rare, heritable inflammasomopathies. Recently, inflammasome function has been implicated in more common human conditions, such as gout, type II diabetes and cancer. This raises the possibility that anti-IL-1 therapeutics may have broader applications than anticipated previously, and may be utilized across diverse disease states that are linked insidiously through unwanted or heightened inflammasome activity.


Assuntos
Proteínas de Transporte/imunologia , Caspase 1/imunologia , Doenças Hereditárias Autoinflamatórias/imunologia , Imunidade Inata , Inflamassomos/imunologia , Inflamação/imunologia , Interleucina-1beta/imunologia , Transdução de Sinais/imunologia , Animais , Anti-Inflamatórios/farmacologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/patologia , Ativação Enzimática , Precursores Enzimáticos/genética , Precursores Enzimáticos/imunologia , Precursores Enzimáticos/metabolismo , Regulação da Expressão Gênica , Gota/tratamento farmacológico , Gota/imunologia , Gota/patologia , Doenças Hereditárias Autoinflamatórias/tratamento farmacológico , Doenças Hereditárias Autoinflamatórias/patologia , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular/métodos , Micoses/imunologia , Micoses/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Viroses/imunologia , Viroses/virologia
2.
Cell Death Differ ; 23(11): 1827-1838, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419363

RESUMO

Caspase-1 cleaves and activates the pro-inflammatory cytokine interleukin-1 beta (IL-1ß), yet the mechanism of IL-1ß release and its dependence on cell death remains controversial. To address this issue, we generated a novel inflammasome independent system in which we directly activate caspase-1 by dimerization. In this system, caspase-1 dimerization induced the cleavage and secretion of IL-1ß, which did not require processing of caspase-1 into its p20 and p10 subunits. Moreover, direct caspase-1 dimerization allowed caspase-1 activation of IL-1ß to be separated from cell death. Specifically, we demonstrate at the single cell level that IL-1ß can be released from live, metabolically active, cells following caspase-1 activation. In addition, we show that dimerized or endogenous caspase-8 can also directly cleave IL-1ß into its biologically active form, in the absence of canonical inflammasome components. Therefore, cell death is not obligatory for the robust secretion of bioactive IL-1ß.


Assuntos
Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Animais , Caspase 8/metabolismo , Morte Celular , Sobrevivência Celular , DNA Girase/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Inflamassomos/metabolismo , Camundongos , Multimerização Proteica , Proteínas Recombinantes de Fusão/metabolismo
3.
Cell Death Differ ; 23(7): 1185-97, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26868910

RESUMO

The pseudokinase, MLKL (mixed-lineage kinase domain-like), is the most terminal obligatory component of the necroptosis cell death pathway known. Phosphorylation of the MLKL pseudokinase domain by the protein kinase, receptor interacting protein kinase-3 (RIPK3), is known to be the key step in MLKL activation. This phosphorylation event is believed to trigger a molecular switch, leading to exposure of the N-terminal four-helix bundle (4HB) domain of MLKL, its oligomerization, membrane translocation and ultimately cell death. To examine how well this process is evolutionarily conserved, we analysed the function of MLKL orthologues. Surprisingly, and unlike their mouse, horse and frog counterparts, human, chicken and stickleback 4HB domains were unable to induce cell death when expressed in murine fibroblasts. Forced dimerization of the human MLKL 4HB domain overcame this defect and triggered cell death in human and mouse cell lines. Furthermore, recombinant proteins from mouse, frog, human and chicken MLKL, all of which contained a 4HB domain, permeabilized liposomes, and were most effective on those designed to mimic plasma membrane composition. These studies demonstrate that the membrane-permeabilization function of the 4HB domain is evolutionarily conserved, but reveal that execution of necroptotic death by it relies on additional factors that are poorly conserved even among closely related species.


Assuntos
Apoptose , Evolução Molecular , Proteínas Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Galinhas , Células HT29 , Células HeLa , Cavalos , Humanos , Lipossomos/metabolismo , Camundongos , Necrose/genética , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
5.
Cell Death Dis ; 4: e465, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23328672

RESUMO

Ligation of tumor necrosis factor receptor 1 (TNFR1) can cause cell death by caspase 8 or receptor-interacting protein kinase 1 (RIPK1)- and RIPK3-dependent mechanisms. It has been assumed that because RIPK1 bears a death domain (DD), but RIPK3 does not, RIPK1 is necessary for recruitment of RIPK3 into signaling and death-inducing complexes. To test this assumption, we expressed elevated levels of RIPK3 in murine embryonic fibroblasts (MEFs) from wild-type (WT) and gene-deleted mice, and exposed them to TNF. Neither treatment with TNF nor overexpression of RIPK3 alone caused MEFs to die, but when levels of RIPK3 were increased, addition of TNF killed WT, Ripk1(-/-), caspase 8(-/-), and Bax(-/-)/Bak(-/-) MEFs, even in the presence of the broad-spectrum caspase inhibitor Q-VD-OPh. In contrast, Tnfr1(-/-) and Tradd(-/-) MEFs did not die. These results show for the first time that in the absence of RIPK1, TNF can activate RIPK3 to induce cell death both by a caspase 8-dependent mechanism and by a separate Bax/Bak- and caspase-independent mechanism. RIPK1 is therefore not essential for TNF to activate RIPK3 to induce necroptosis nor for the formation of a functional ripoptosome/necrosome.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 8/genética , Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos , Necrose , Quinolinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteína de Domínio de Morte Associada a Receptor de TNF/deficiência , Proteína de Domínio de Morte Associada a Receptor de TNF/genética , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
6.
Cell Death Differ ; 20(9): 1149-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23645208

RESUMO

Inflammasomes are protein complexes assembled upon recognition of infection or cell damage signals, and serve as platforms for clustering and activation of procaspase-1. Oligomerisation of initiating proteins such as AIM2 (absent in melanoma-2) and NLRP3 (NOD-like receptor family, pyrin domain-containing-3) recruits procaspase-1 via the inflammasome adapter molecule ASC (apoptosis-associated speck-like protein containing a CARD). Active caspase-1 is responsible for rapid lytic cell death termed pyroptosis. Here we show that AIM2 and NLRP3 inflammasomes activate caspase-8 and -1, leading to both apoptotic and pyroptotic cell death. The AIM2 inflammasome is activated by cytosolic DNA. The balance between pyroptosis and apoptosis depended upon the amount of DNA, with apoptosis seen at lower transfected DNA concentrations. Pyroptosis had a higher threshold for activation, and dominated at high DNA concentrations because it happens more rapidly. Gene knockdown showed caspase-8 to be the apical caspase in the AIM2- and NLRP3-dependent apoptotic pathways, with little or no requirement for caspase-9. Procaspase-8 localised to ASC inflammasome 'specks' in cells, and bound directly to the pyrin domain of ASC. Thus caspase-8 is an integral part of the inflammasome, and this extends the relevance of the inflammasome to cell types that do not express caspase-1.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Caspase 8/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/metabolismo , Caspase 8/genética , Caspase 9/genética , Proteínas de Ligação a DNA , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interferência de RNA , RNA Interferente Pequeno , Receptor Toll-Like 9/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA