Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cardiology ; 149(3): 217-224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432214

RESUMO

INTRODUCTION: Acute myocardial infarction (AMI) is a main contributor of sudden cardiac death worldwide. The discovery of new biomarkers that can improve AMI risk prediction meets a major clinical need for the identification of high-risk patients and the tailoring of medical treatment. Previously, we reported that autophagy a highly conserved catabolic mechanism for intracellular degradation of cellular components is involved in atherosclerotic plaque phenotype and cardiac pathological remodeling. The crucial role of autophagy in the normal and diseased heart has been well described, and its activation functions as a pro-survival process in response to myocardial ischemia. However, autophagy is dysregulated in ischemia/reperfusion injury, thus promoting necrotic or apoptotic cardiac cell death. Very few studies have focused on the plasma levels of autophagy markers in cardiovascular disease patients, even though they could be companion biomarkers of AMI injury. The aims of the present study were to evaluate (1) whether variations in plasma levels of two key autophagy regulators autophagy-related gene 5 (ATG5) and Beclin 1 (the mammalian yeast ortholog Atg6/Vps30) are associated with AMI and (2) their potential for predicting AMI risk. METHODS: The case-control study population included AMI patients (n = 100) and control subjects (n = 99) at high cardiovascular risk but without known coronary disease. Plasma levels of ATG5 and Beclin 1 were measured in the whole population study by enzyme-linked immunosorbent assay. RESULTS: Multivariate analyses adjusted on common cardiovascular factors and medical treatments, and receiver operating characteristic curves demonstrated that ATG5 and Beclin 1 levels were inversely associated with AMI and provided original biomarkers for AMI risk prediction. CONCLUSION: Plasma levels of autophagy regulators ATG5 and Beclin 1 represent relevant candidate biomarkers associated with AMI.


Assuntos
Proteína 5 Relacionada à Autofagia , Autofagia , Proteína Beclina-1 , Biomarcadores , Infarto do Miocárdio , Humanos , Masculino , Estudos de Casos e Controles , Proteína Beclina-1/sangue , Proteína Beclina-1/metabolismo , Proteína 5 Relacionada à Autofagia/sangue , Feminino , Infarto do Miocárdio/sangue , Pessoa de Meia-Idade , Idoso , Biomarcadores/sangue
2.
Am J Physiol Endocrinol Metab ; 321(3): E325-E337, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34250814

RESUMO

The number of older obese adults is increasing worldwide. Whether obese adults show similar health benefits in response to lifestyle interventions at different ages is unknown. The study enrolled 25 obese men (body mass index: 31-39 kg/m2) in two arms according to age (30-40 and 60-70 yr old). Participants underwent an 8-wk intervention with moderate calorie restriction (∼20% below individual energy requirements) and supervised endurance training resulting in ∼5% weight loss. Body composition was measured using dual energy X-ray absorptiometry. Insulin sensitivity was assessed during a hypersinsulinemic-euglycemic clamp. Cardiometabolic profile was derived from blood parameters. Subcutaneous fat and vastus lateralis muscle biopsies were used for ex vivo analyses. Two-way repeated-measure ANOVA and linear mixed models were used to evaluate the response to lifestyle intervention and comparison between the two groups. Fat mass was decreased and bone mass was preserved in the two groups after intervention. Muscle mass decreased significantly in older obese men. Cardiovascular risk (Framingham risk score, plasma triglyceride, and cholesterol) and insulin sensitivity were greatly improved to a similar extent in the two age groups after intervention. Changes in adipose tissue and skeletal muscle transcriptomes were marginal. Analysis of the differential response to the lifestyle intervention showed tenuous differences between age groups. These data suggest that lifestyle intervention combining calorie restriction and exercise shows similar beneficial effects on cardiometabolic risk and insulin sensitivity in younger and older obese men. However, attention must be paid to potential loss of muscle mass in response to weight loss in older obese men.NEW & NOTEWORTHY Rise in obesity and aging worldwide are major trends of critical importance in public health. This study addresses a current challenge in obesity management. Do older obese adults respond differently to a lifestyle intervention composed of moderate calorie restriction and supervised physical activity than younger ones? The main conclusion of the study is that older and younger obese men similarly benefit from the intervention in terms of cardiometabolic risk.


Assuntos
Adaptação Fisiológica , Sistema Cardiovascular/metabolismo , Estilo de Vida , Obesidade/metabolismo , Programas de Redução de Peso , Adulto , Fatores Etários , Idoso , Composição Corporal , Humanos , Masculino , Pessoa de Meia-Idade
3.
Circulation ; 131(12): 1061-70, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25613820

RESUMO

BACKGROUND: This study was designed to evaluate the effect of arglabin on the NLRP3 inflammasome inhibition and atherosclerotic lesion in ApoE2Ki mice fed a high-fat Western-type diet. METHODS AND RESULTS: Arglabin was purified, and its chemical identity was confirmed by mass spectrometry. It inhibited, in a concentration-dependent manner, interleukin (IL)-1ß and IL-18, but not IL-6 and IL-12, production in lipopolysaccharide and cholesterol crystal-activated cultured mouse peritoneal macrophages, with a maximum effect at ≈50 nmol/L and EC50 values for both cytokines of ≈ 10 nmol/L. Lipopolysaccharide and cholesterol crystals did not induce IL-1ß and IL-18 production in Nlrp3(-/-) macrophages. In addition, arglabin activated autophagy as evidenced by the increase in LC3-II protein. Intraperitoneal injection of arglabin (2.5 ng/g body weight twice daily for 13 weeks) into female ApoE2.Ki mice fed a high-fat diet resulted in a decreased IL-1ß plasma level compared with vehicle-treated mice (5.2±1.0 versus 11.7±1.1 pg/mL). Surprisingly, arglabin also reduced plasma levels of total cholesterol and triglycerides to 41% and 42%, respectively. Moreover, arglabin oriented the proinflammatory M1 macrophages into the anti-inflammatory M2 phenotype in spleen and arterial lesions. Finally, arglabin treatment markedly reduced the median lesion areas in the sinus and whole aorta to 54% (P=0.02) and 41% (P=0.02), respectively. CONCLUSIONS: Arglabin reduces inflammation and plasma lipids, increases autophagy, and orients tissue macrophages into an anti-inflammatory phenotype in ApoE2.Ki mice fed a high-fat diet. Consequently, a marked reduction in atherosclerotic lesions was observed. Thus, arglabin may represent a promising new drug to treat inflammation and atherosclerosis.


Assuntos
Apolipoproteína E2/deficiência , Aterosclerose/tratamento farmacológico , Proteínas de Transporte/antagonistas & inibidores , Dieta Hiperlipídica/efeitos adversos , Inflamassomos/antagonistas & inibidores , Sesquiterpenos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Aterosclerose/sangue , Aterosclerose/etiologia , Feminino , Inflamassomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sesquiterpenos/farmacologia , Sesquiterpenos de Guaiano , Resultado do Tratamento
4.
Arterioscler Thromb Vasc Biol ; 33(1): e19-29, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23139295

RESUMO

OBJECTIVE: Despite cardioprotective properties, studies investigating adiponectin as a cardiovascular disease marker led to conflicting results. We investigated in participants with stable coronary artery disease (CAD) and controls whether serum adiponectin was associated with long-term mortality, considering varying degrees of CAD severity. METHODS AND RESULTS: A case-control design with prospective median follow-up of 8.1 years was used. Survival rates among 715 CAD men (aged 45-74 years) in increasing quartiles of serum adiponectin values were 87.5%, 85.6%, 76.4%, and 67.6%, respectively (P<0.001). Survival rates in 782 controls with adiponectin <9.1 µg/mL and ≥9.1 µg/mL (third quartile) were 95.3% and 91.0%, respectively (P=0.035). Adiponectin concentration above the highest quartile was associated with an increased risk of total and cardiovascular disease mortality in CAD patients (P=0.001 and P=0.001) and controls (P=0.02 and P=0.004). The associations among high adiponectin, total mortality, and cardiovascular disease mortality remained significant after multivariate adjustments for metabolic, cardiac, and CAD severity variables. No significant interaction was found among CAD patients, controls, and the relationship of adiponectin with mortality. CONCLUSIONS: High serum adiponectin is a predictor of mortality, particularly from cardiovascular disease. This prognostic value remains significant whatever the severity of the CAD and the metabolic status and is not different among people with and without CAD.


Assuntos
Adiponectina/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/mortalidade , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Causas de Morte , Distribuição de Qui-Quadrado , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/fisiopatologia , Progressão da Doença , Seguimentos , França , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo , Regulação para Cima
5.
Front Cardiovasc Med ; 10: 1279899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250026

RESUMO

Background: The discovery of novel biomarkers that improve current cardiovascular risk prediction models of acute coronary syndrome (ACS) is needed for the identification of very high-risk patients and therapeutic decision-making. Autophagy is a highly conserved catabolic mechanism for intracellular degradation of cellular components through lysosomes. The autophagy process helps maintain cardiac homeostasis and dysregulated autophagy has been described in cardiovascular conditions. Rubicon (Run domain Beclin-1-interacting and cysteine-rich domain-containing protein) is a key regulator of autophagy with a potential role in cardiac stress. Objectives: The aims of the present study were to assess whether changes in circulating Rubicon levels are associated with ACS and to evaluate the added value of Rubicon to a clinical predictive risk model. Methods and results: The study population included ACS patients (n = 100) and control subjects (n = 99) at high to very high cardiovascular risk but without known coronary event. Plasma Rubicon levels were measured in the whole study population by enzyme-linked immunosorbent assay. Multivariate logistic regression analyses established that Rubicon levels were inversely associated with ACS. A receiver operating characteristic curve analysis demonstrated that the addition of Rubicon improved the predictive performance of the model with an increased area under the curve from 0.868 to 0.896 (p = 0.038). Conclusions: Plasma levels of the autophagy regulator Rubicon are associated with ACS and provide added value to classical risk markers for ACS.

6.
Nat Commun ; 14(1): 4622, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528097

RESUMO

Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1ß production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.


Assuntos
Aterosclerose , Humanos , Animais , Camundongos , Aterosclerose/metabolismo , Autofagia/genética , Apolipoproteínas E/genética , Lipídeos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
7.
J Mol Cell Cardiol ; 52(2): 502-10, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21820441

RESUMO

The serotonin 5-HT(2A) receptor belongs to the G-protein-coupled receptors (GPCRs) superfamily and mediates the hypertrophic response to serotonin (5-HT) in cardiac myocytes. At present the regulatory mechanisms of 5-HT(2A) receptor-induced myocyte hypertrophy are not fully understood. The localization and the compartmentation of GPCRs within specialized membrane microdomains are known to modulate their signalling pathway. Therefore, we hypothesized that caveolae microdomains and caveolin-3, the predominant isoform of cardiac caveolae, might be regulators of 5-HT(2A) receptor signalling. We demonstrate that 5-HT(2A) receptors interact with caveolin-3 upon 5-HT stimulation and traffic into caveolae membrane microdomains. We provide evidence that caveolin-3 knockdown abolishes the redistribution of 5-HT(2A) receptors into caveolae and enhances 5-HT(2A) receptor-induced myocyte hypertrophic markers such as cell size, protein synthesis and ANF gene expression. Importantly, we demonstrate that caveolin-3 and caveolae structures are negative regulators of 5-HT(2A) receptor-induced nuclear factor of activated T cells (NFAT) transcriptional activation. Taken together, our data demonstrate that caveolin-3 and caveolae microdomains are important regulators of the hypertrophic response induced by 5-HT(2A) receptors. These findings thus open new insights to target heart hypertrophy under the enhanced serotonin system. This article is part of a Special Issue entitled "Local Signaling in Myocytes".


Assuntos
Cardiomegalia/metabolismo , Caveolina 3/metabolismo , Mioblastos Cardíacos/metabolismo , Miócitos Cardíacos/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Cardiomegalia/genética , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Caveolina 3/genética , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inativação Gênica , Masculino , Camundongos , Camundongos Endogâmicos C3H , Ligação Proteica , Transporte Proteico , Ratos , Receptor 5-HT2A de Serotonina/genética , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos
8.
Biomolecules ; 12(9)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139082

RESUMO

Background-The identification and stratification of patients at risk of fatal outcomes after myocardial infarction (MI) is of considerable interest to guide secondary prevention therapies. Currently, no accurate biomarkers are available to identify subjects who are at risk of suffering acute manifestations of coronary heart disease as well as to predict adverse events after MI. Non-coding circulating microRNAs (miRNAs) have been proposed as novel diagnostic and prognostic biomarkers in cardiovascular diseases. The aims of the study were to investigate the clinical value of a panel of circulating miRNAs as accurate biomarkers associated with MI and mortality risk prediction in patients with documented MI. Methods and Results-seven circulating plasma miRNAs were analyzed in 67 MI patients and 80 control subjects at a high cardiovascular risk but without known coronary diseases. Multivariate logistic regression analyses demonstrated that six miRNAs were independently associated with MI occurrence. Among them, miR-223 and miR-186 reliably predicted long-term mortality in MI patients, in particular miR-223 (HR 1.57 per one-unit increase, p = 0.02), after left ventricular ejection fraction (LVEF) adjustment. Kaplan-Meier survival analyses provided a predictive threshold value of miR-223 expression (p = 0.028) for long-term mortality. Conclusions-Circulating miR-223 and miR-186 are promising predictive biomarkers for long-term mortality after MI.


Assuntos
MicroRNA Circulante , MicroRNAs , Infarto do Miocárdio , Biomarcadores/metabolismo , Humanos , MicroRNAs/genética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Volume Sistólico , Função Ventricular Esquerda
10.
Circ Res ; 104(3): 328-36, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19106412

RESUMO

Oxidized low-density lipoproteins (oxLDLs) trigger various biological responses potentially involved in atherogenesis. Disturbing endoplasmic reticulum (ER) function results in ER stress and unfolded protein response, which tends to restore ER homeostasis but switches to apoptosis when ER stress is prolonged. We aimed to investigate whether ER stress is induced by oxLDLs and can be prevented by the ER-associated chaperone ORP150 (150-kDa oxygen-regulated protein). oxLDLs and the lipid oxidation products 7-ketocholesterol and 4-hydroxynonenal induce ER stress in human endothelial cells (HMEC-1), characterized by the activation of ER stress sensors (phosphorylation of Ire1alpha and PERK, nuclear translocation of ATF6) and of their subsequent pathways (eukaryotic initiation factor 2alpha phosphorylation, expression of XBP1/spliced XBP1, CHOP, and KDEL chaperones GRP78, GRP94, ORP150). ER stress was inhibited by the antioxidant N-acetylcysteine. In advanced atherosclerotic lesions, phospho-Ire1alpha, KDEL, and ORP150 staining were localized in lipid-rich areas with 4-hydroxynonenal adducts and CD68-positive macrophagic cells. By comparison, staining for 4-hydroxynonenal, phospho-Ire1alpha, KDEL, and ORP were faint and more diffuse in intimal hyperplasia. ER stress takes part in the apoptotic effect of oxLDLs, through the Ire1alpha/c-Jun N-terminal kinase pathway, as assessed by the protective effect of specific small interfering RNAs and c-Jun N-terminal kinase inhibitor. Forced expression of the chaperone ORP150 reduced both oxLDL-induced ER stress and apoptosis. ER stress markers and ORP150 chaperone are expressed in areas containing oxLDLs in atherosclerotic lesions and are induced by oxLDLs and oxidized lipids in cultured cells. The forced expression of ORP150 highlights its new protective role against oxLDL-induced ER stress and subsequent apoptosis.


Assuntos
Aterosclerose/metabolismo , Retículo Endoplasmático/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas/metabolismo , Estresse Fisiológico/fisiologia , Acetilcisteína/farmacologia , Aldeídos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Aterosclerose/patologia , Biomarcadores/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Células Endoteliais/citologia , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Proteínas de Choque Térmico HSP70 , Humanos , Técnicas In Vitro , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Cetocolesteróis/farmacologia , Lipoproteínas LDL/farmacologia , Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos
11.
Antioxidants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35052538

RESUMO

The endothelial integrity is the cornerstone of the atherogenic process. Low-density lipoprotein (LDL) oxidation occurring within atheromatous plaques leads to deleterious vascular effects including endothelial cell cytotoxicity. The aim of this study was to evaluate the vascular antioxidant and cytoprotective effects of polyphenol-rich extracts from two medicinal plants from the Reunion Island: Antirhea borbonica (A. borbonica), Doratoxylon apetalum (D. apetalum). The polyphenol-rich extracts were obtained after dissolving each dry plant powder in an aqueous acetonic solution. Quantification of polyphenol content was achieved by the Folin-Ciocalteu assay and total phenol content was expressed as g gallic acid equivalent/100 g plant powder (GAE). Human vascular endothelial cells were incubated with increasing concentrations of polyphenols (1-50 µM GAE) before stimulation with oxidized low-density lipoproteins (oxLDLs). LDL oxidation was assessed by quantification of hydroperoxides and thiobarbituric acid reactive substances (TBARS). Intracellular oxidative stress and antioxidant activity (catalase and superoxide dismutase) were measured after stimulation with oxLDLs. Cell viability and apoptosis were quantified using different assays (MTT, Annexin V staining, cytochrome C release, caspase 3 activation and TUNEL test). A. borbonica and D. apetalum displayed high levels of polyphenols and limited LDL oxidation as well as oxLDL-induced intracellular oxidative stress in endothelial cells. Polyphenol extracts of A. borbonica and D. apetalum exerted a protective effect against oxLDL-induced cell apoptosis in a dose-dependent manner (10, 25, and 50 µM GAE) similar to that observed for curcumin, used as positive control. All together, these results showed significant antioxidant and antiapoptotic properties for two plants of the Reunion Island pharmacopeia, A. borbonica and D. apetalum, suggesting their therapeutic potential to prevent cardiovascular diseases by limiting LDL oxidation and protecting the endothelium.

12.
Atherosclerosis ; 326: 47-55, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33933263

RESUMO

BACKGROUND AND AIMS: Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) is an endogenous inhibitor of the LDL receptor (LDLR). Mendelian randomization studies suggest that PCSK9 deficiency increases diabetes risk, but the underlying mechanisms remain unknown. The aim of our study was to investigate whether PCSK9 or its inhibition may modulate beta cell function. METHODS: We assessed PCSK9 and insulin colocalization in human pancreatic sections by epifluorescent and confocal microscopy. We also investigated the expression and the function of PCSK9 in the human EndoC-ßH1 beta cell line, by ELISA and flow cytometry, respectively. PCSK9 was inhibited with Alirocumab or siRNA. LDLR expression and LDL uptake were assessed by flow cytometry. RESULTS: PCSK9 was expressed and secreted from beta cells isolated from human pancreas as well as from EndoC-ßH1 cells. PCSK9 secretion was enhanced by statin treatment. Recombinant PCSK9 decreased LDLR abundance at the surface of these cells, an effect abrogated by Alirocumab. Alirocumab as well as PCSK9 silencing increased LDLR expression at the surface of EndoC-ßH1 cells. Neither exogenous PCSK9, nor Alirocumab, nor PCSK9 silencing significantly altered glucose-stimulated insulin secretion (GSIS) from these cells. High-low density lipoproteins (LDL) concentrations decreased GSIS, but the addition of PCSK9 or its inhibition did not modulate this phenomenon. CONCLUSIONS: While PCSK9 regulates LDLR abundance in beta cells, inhibition of exogenous or endogenous PCSK9 does not appear to significantly impact insulin secretion. This is reassuring for the safety of PCSK9 inhibitors in terms of beta cell function.


Assuntos
Células Secretoras de Insulina , Pró-Proteína Convertase 9 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases , Receptores de LDL , Subtilisinas
13.
J Cell Mol Med ; 14(3): 608-20, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19243471

RESUMO

Plasma high-density lipoproteins (HDLs) protect endothelial cells against apoptosis induced by oxidized low-density lipoprotein (oxLDL). The specific component(s) of HDLs implicated in such cytoprotection remain(s) to be identified. Human microvascular endothelial cells (HMEC-1) were incubated with mildly oxLDL in the presence or absence of each of five physicochemically distinct HDL subpopulations fractionated from normolipidemic human plasma (n= 7) by isopycnic density gradient ultracentrifugation. All HDL subfractions protected HMEC-1 against oxLDL-induced primary apoptosis as revealed by nucleic acid staining, annexin V binding, quantitative DNA fragmentation, inhibition of caspase-3 activity and reduction of cytoplasmic release of cytochrome c and apoptosis-inducing factor. Small, dense HDL 3c displayed twofold superior intrinsic cytoprotective activity (as determined by mitochondrial dehydrogenase activity) relative to large, light HDL 2b on a per particle basis (P < 0.05). Equally, all HDL subfractions attenuated intracellular generation of reactive oxygen species (ROS); such anti-oxidative activity diminished from HDL 3c to HDL 2b. The HDL protein moiety, in which apolipoprotein A-I (apoA-I) predominated, accounted for approximately 70% of HDL anti-apoptotic activity. Furthermore, HDL reconstituted with apoA-I, cholesterol and phospholipid potently protected HMEC-1 from apoptosis. By contrast, modification of the content of sphingosine-1-phosphate in HDL did not significantly alter cytoprotection. We conclude that small, dense, lipid-poor HDL 3 potently protects endothelial cells from primary apoptosis and intracellular ROS generation induced by mildly oxLDL, and that apoA-I is pivotal to such protection.


Assuntos
Apoptose/efeitos dos fármacos , Lipoproteínas HDL3/farmacologia , Lipoproteínas LDL/farmacologia , Apolipoproteína A-I/sangue , Apolipoproteína A-I/farmacologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Células Endoteliais/citologia , Humanos , Immunoblotting , Lipoproteínas HDL3/sangue , Lisofosfolipídeos/sangue , Lisofosfolipídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Esfingosina/análogos & derivados , Esfingosina/sangue , Esfingosina/farmacologia
14.
Biochem Biophys Res Commun ; 391(1): 979-83, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20005206

RESUMO

Serotonin (5-HT) participates in the development of cardiac hypertrophy through 5-HT(2A) serotonin receptors. The hypertrophic growth of cardiomyoblasts induced by 5-HT(2A) receptors involves the activation of the Ca(2+) responsive calcineurin/NFAT pathway. However, the mechanism whereby NFAT is activated by 5-HT(2A) receptors remains indeterminate. In this study, we examined whether transient receptor potential canonical (TRPC) channels participate in NFAT activation and hypertrophic response triggered by 5-HT. We demonstrate that TRPC1 expression is upregulated in 5-HT-treated rat cardiomyoblasts whereas TRPC6 is induced in a mouse model of heart hypertrophy. Moreover, TRPC1 knockdown by small interfering RNA inhibits NFAT activation and hypertrophic response mediated by 5-HT(2A) receptors. These findings provide new insights about a mechanistic basis for the activation of the calcineurin/NFAT pathway by 5-HT(2A) receptors and highlight the critical role of TRPC1 in the development of cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Mioblastos Cardíacos/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Linhagem Celular , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , RNA Interferente Pequeno/genética , Ratos , Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6
15.
J Clin Med ; 9(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492915

RESUMO

BACKGROUND: The discovery of novel biomarkers that improve risk prediction models of acute coronary syndrome (ACS) is needed to better identify and stratify very high-risk patients. MicroRNAs (miRNAs) are essential non-coding modulators of gene expression. Circulating miRNAs recently emerged as important regulators and fine-tuners of physiological and pathological cardiovascular processes; therefore, specific miRNAs expression profiles may represent new risk biomarkers. The aims of the present study were: i) to assess the changes in circulating miRNAs levels associated with ACS and ii) to evaluate the incremental value of adding circulating miRNAs to a clinical predictive risk model. METHODS AND RESULTS: The study population included ACS patients (n = 99) and control subjects (n = 103) at high to very high cardiovascular risk but without known coronary event. Based on a miRNA profiling in a matched derivation case (n = -6) control (n = 6) cohort, 21 miRNAs were selected for validation. Comparing ACS cases versus controls, seven miRNAs were significantly differentially expressed. Multivariate logistic regression analyses demonstrated that among the seven miRNAs tested, five were independently associated with the occurrence of ACS. A receiver operating characteristic curve analysis revealed that the addition of miR-122 + miR-150 + miR-195 + miR-16 to the clinical model provided the best performance with an increased area under the curve (AUC) from 0.882 to 0.924 (95% CI 0.885-0.933, p = 0.003). CONCLUSIONS: Our study identified a powerful signature of circulating miRNAs providing additive value to traditional risk markers for ACS.

16.
Cell Death Differ ; 27(6): 1907-1923, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31819159

RESUMO

Chronic remodeling postmyocardial infarction consists in various maladaptive changes including interstitial fibrosis, cardiomyocyte death and mitochondrial dysfunction that lead to heart failure (HF). Reactive aldehydes such as 4-hydroxynonenal (4-HNE) are critical mediators of mitochondrial dysfunction but the sources of mitochondrial 4-HNE in cardiac diseases together with its mechanisms of action remain poorly understood. Here, we evaluated whether the mitochondrial enzyme monoamine oxidase-A (MAO-A), which generates H2O2 as a by-product of catecholamine metabolism, is a source of deleterious 4-HNE in HF. We found that MAO-A activation increased mitochondrial ROS and promoted local 4-HNE production inside the mitochondria through cardiolipin peroxidation in primary cardiomyocytes. Deleterious effects of MAO-A/4-HNE on cardiac dysfunction were prevented by activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2), the main enzyme for 4-HNE metabolism. Mechanistically, MAO-A-derived 4-HNE bound to newly identified targets VDAC and MCU to promote ER-mitochondria contact sites and MCU higher-order complex formation. The resulting mitochondrial Ca2+ accumulation participated in mitochondrial respiratory dysfunction and loss of membrane potential, as shown with the protective effects of the MCU inhibitor, RU360. Most interestingly, these findings were recapitulated in a chronic model of ischemic remodeling where pharmacological or genetic inhibition of MAO-A protected the mice from 4-HNE accumulation, MCU oligomer formation and Ca2+ overload, thus mitigating ventricular dysfunction. To our knowledge, these are the first evidences linking MAO-A activation to mitoCa2+ mishandling through local 4-HNE production, contributing to energetic failure and postischemic remodeling.


Assuntos
Aldeídos/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Monoaminoxidase/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos , Animais , Cálcio/metabolismo , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Remodelação Ventricular
17.
J Cell Mol Med ; 13(8B): 1620-1631, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20187291

RESUMO

Oxidized low-density lipoprotein (oxLDL) induced-apoptosis of vascular cells may participate in plaque instability and rupture. We have previously shown that vascular smooth muscle cells (VSMC) stably expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis than VSMC expressing lower level of caveolin-1, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. In this study, we aimed to identify the molecular events involved in oxLDL-induced Ca(2+) influx and their regulation by the structural protein caveolin-1. In VSMC, transient receptor potential canonical-1 (TRPC1) silencing by ARN interference prevents the Ca(2+) influx and reduces the toxicity induced by oxLDL. Moreover, caveolin-1 silencing induces concomitant decrease of TRPC1 expression and reduces oxLDL-induced apoptosis of VSMC. OxLDL enhanced the cell surface expression of TRPC1, as shown by biotinylation of cell surface proteins, and induced TRPC1 translocation into caveolar compartment, as assessed by subcellular fractionation. OxLDL-induced TRPC1 translocation was dependent on actin cytoskeleton and associated with a dramatic rise of 7-ketocholesterol (a major oxysterol in oxLDL) into caveolar membranes, whereas the caveolar content of cholesterol was unchanged. Altogether, the reported results show that TRPC1 channels play a role in Ca(2+) influx and Ca(2+) homeostasis deregulation that mediate apoptosis induced by oxLDL. These data also shed new light on the role of caveolin-1 and caveolar compartment as important regulators of TRPC1 trafficking to the plasma membrane and apoptotic processes that play a major role in atherosclerosis.


Assuntos
Apoptose/fisiologia , Caveolina 1/fisiologia , Regulação da Expressão Gênica/fisiologia , Lipoproteínas LDL/fisiologia , Músculo Liso Vascular/citologia , Canais de Cátion TRPC/genética , Sequência de Bases , Células Cultivadas , Humanos , RNA Interferente Pequeno
18.
J Cell Biol ; 162(4): 661-71, 2003 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-12925710

RESUMO

Eph receptors and their ligands (ephrins) play an important role in axonal guidance, topographic mapping, and angiogenesis. The signaling pathways mediating these activities are starting to emerge and are highly cell- and receptor-type specific. Here we demonstrate that activated EphB1 recruits the adaptor proteins Grb2 and p52Shc and promotes p52Shc and c-Src tyrosine phosphorylation as well as MAPK/extracellular signal-regulated kinase (ERK) activation. EphB1-mediated increase of cell migration was abrogated by the MEK inhibitor PD98059 and Src inhibitor PP2. In contrast, cell adhesion, which we previously showed to be c-jun NH2-terminal kinase (JNK) dependent, was unaffected by ERK1/2 and Src inhibition. Expression of dominant-negative c-Src significantly reduced EphB1-dependent ERK1/2 activation and chemotaxis. Site-directed mutagenesis experiments demonstrate that tyrosines 600 and 778 of EphB1 are required for its interaction with c-Src and p52Shc. Furthermore, phosphorylation of p52Shc by c-Src is essential for its recruitment to EphB1 signaling complexes through its phosphotyrosine binding domain. Together these findings highlight a new aspect of EphB1 signaling, whereby the concerted action of c-Src and p52Shc activates MAPK/ERK and regulates events involved in cell motility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Quimiotaxia/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas/metabolismo , Receptor EphB1/metabolismo , Animais , Proteína Tirosina Quinase CSK , Movimento Celular , Proteína Adaptadora GRB2 , Humanos , Proteínas Adaptadoras da Sinalização Shc , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Tirosina/metabolismo , Quinases da Família src
19.
Cells ; 8(6)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242668

RESUMO

Mitochondria-associated ER membranes (MAMs) are crucial for lipid transport and synthesis, calcium exchange, and mitochondrial functions, and they also act as signaling platforms. These contact sites also play a critical role in the decision between autophagy and apoptosis with far reaching implications for cell fate. Vascular smooth muscle cell (VSMC) apoptosis accelerates atherogenesis and the progression of advanced lesions, leading to atherosclerotic plaque vulnerability and medial degeneration. Though the successful autophagy of damaged mitochondria promotes VSMC survival against pro-apoptotic atherogenic stressors, it is unknown whether MAMs are involved in VSMC mitophagy processes. Here, we investigated the role of the multifunctional MAM protein phosphofurin acidic cluster sorting protein 2 (PACS-2) in regulating VSMC survival following a challenge by atherogenic lipids. Using high-resolution confocal microscopy and proximity ligation assays, we found an increase in MAM contacts as in PACS-2-associated MAMs upon stimulation with atherogenic lipids. Correspondingly, the disruption of MAM contacts by PACS-2 knockdown impaired mitophagosome formation and mitophagy, thus potentiating VSMC apoptosis. In conclusion, our data shed new light on the significance of the MAM modulatory protein PACS-2 in vascular cell physiopathology and suggest MAMs may be a new target to modulate VSMC fate and favor atherosclerotic plaque stability.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Fagossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Morte Celular , Humanos , Lipoproteínas LDL , Camundongos , Modelos Biológicos
20.
Cell Death Dis ; 10(2): 119, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741928

RESUMO

Vascular smooth muscle cells (VSMCs) are one of the main cellular determinants in arterial pathology. A large body of evidence indicates that death of VSMCs is associated with features of high-risk/vulnerable atherosclerotic plaques. Mitochondrial turnover is an essential aspect of the mitochondrial quality control in which dysfunctional mitochondria are selectively eliminated through autophagy and replaced through expansion of preexisting mitochondria. Even though successful autophagy promotes VSMC survival, it is unclear whether reduced autophagic flux affects mitochondrial quality control of VSMCs in atherosclerotic plaques. By using apolipoprotein E-deficient (ApoE-/-) mice carrying a VSMC-specific deletion of the essential autophagy gene Atg7, we show in the present study that impaired VSMC autophagy promotes an unstable plaque phenotype, as well as the accumulation of fragmented mitochondria with reduced bioenergetic efficiency and more oxidative stress. Furthermore, we demonstrate that disrupted autophagic flux is linked to defective mitophagy and biogenesis of mitochondria, which exacerbate VSMC apoptosis and in turn plaque vulnerability. Overall, our data indicate that mitochondrial quality control is a promising therapeutic target to stabilize atherosclerotic plaques.


Assuntos
Apoptose , Proteína 7 Relacionada à Autofagia/genética , Mitocôndrias/metabolismo , Placa Aterosclerótica/patologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Proteína 7 Relacionada à Autofagia/deficiência , Células Cultivadas , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Mitofagia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Estresse Oxidativo , Placa Aterosclerótica/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA