Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 85: 187-205, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26563932

RESUMO

Accumulation of ß-amyloid (Aß) and phosphorylated tau in the brain are central events underlying Alzheimer's disease (AD) pathogenesis. Aß is generated from amyloid precursor protein (APP) by ß-site APP-cleaving enzyme 1 (BACE1) and γ-secretase-mediated cleavages. Ubiquilin-1, a ubiquitin-like protein, genetically associates with AD and affects APP trafficking, processing and degradation. Here, we have investigated ubiquilin-1 expression in human brain in relation to AD-related neurofibrillary pathology and the effects of ubiquilin-1 overexpression on BACE1, tau, neuroinflammation, and neuronal viability in vitro in co-cultures of mouse embryonic primary cortical neurons and microglial cells under acute neuroinflammation as well as neuronal cell lines, and in vivo in the brain of APdE9 transgenic mice at the early phase of the development of Aß pathology. Ubiquilin-1 expression was decreased in human temporal cortex in relation to the early stages of AD-related neurofibrillary pathology (Braak stages 0-II vs. III-IV). There was a trend towards a positive correlation between ubiquilin-1 and BACE1 protein levels. Consistent with this, ubiquilin-1 overexpression in the neuron-microglia co-cultures with or without the induction of neuroinflammation resulted in a significant increase in endogenously expressed BACE1 levels. Sustained ubiquilin-1 overexpression in the brain of APdE9 mice resulted in a moderate, but insignificant increase in endogenous BACE1 levels and activity, coinciding with increased levels of soluble Aß40 and Aß42. BACE1 levels were also significantly increased in neuronal cells co-overexpressing ubiquilin-1 and BACE1. Ubiquilin-1 overexpression led to the stabilization of BACE1 protein levels, potentially through a mechanism involving decreased degradation in the lysosomal compartment. Ubiquilin-1 overexpression did not significantly affect the neuroinflammation response, but decreased neuronal viability in the neuron-microglia co-cultures under neuroinflammation. Taken together, these results suggest that ubiquilin-1 may mechanistically participate in AD molecular pathogenesis by affecting BACE1 and thereby APP processing and Aß accumulation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Proteínas tau/metabolismo
2.
Traffic ; 12(3): 330-48, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21143716

RESUMO

The Alzheimer's disease (AD)-associated ubiquilin-1 regulates proteasomal degradation of proteins, including presenilin (PS). PS-dependent γ-secretase generates ß-amyloid (Aß) peptides, which excessively accumulate in AD brain. Here, we have characterized the effects of naturally occurring ubiquilin-1 transcript variants (TVs) on the levels and subcellular localization of PS1 and other γ-secretase complex components and subsequent γ-secretase function in human embryonic kidney 293, human neuroblastoma SH-SY5Y and mouse primary cortical cells. Full-length ubiquilin-1 TV1 and TV3 that lacks the proteasome-interaction domain increased full-length PS1 levels as well as induced accumulation of high-molecular-weight PS1 and aggresome formation. Accumulated PS1 colocalized with TV1 or TV3 in the aggresomes. Electron microscopy indicated that aggresomes containing TV1 or TV3 were targeted to autophagosomes. TV1- and TV3-expressing cells did not accumulate other unrelated proteasome substrates, suggesting that the increase in PS1 levels was not because of a general impairment of the ubiquitin-proteasome system. Furthermore, PS1 accumulation and aggresome formation coincided with alterations in Aß levels, particularly in cells overexpressing TV3. These effects were not related to altered γ-secretase activity or PS1 binding to TV3. Collectively, our results indicate that specific ubiquilin-1 TVs can cause PS1 accumulation and aggresome formation, which may impact AD pathogenesis or susceptibility.


Assuntos
Doença de Alzheimer , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Presenilina-1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Células Cultivadas , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Fagossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica
3.
Biochemistry ; 52(22): 3899-912, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23663107

RESUMO

Ubiquilin-1 is an Alzheimer's disease-associated protein, which is known to modulate amyloid precursor protein (APP) processing, amyloid-ß (Aß) secretion, and presenilin-1 (PS1) accumulation. Here, we aim to elucidate the molecular mechanisms by which full-length transcript variant 1 of ubiquilin-1 (TV1) affects APP processing and γ-secretase function in human neuroblastoma cells stably overexpressing APP (SH-SY5Y-APP751). We found that TV1 overexpression significantly increased the level of APP intracellular domain (AICD) generation. However, there was no increase in the levels of secreted Aß40, Aß42, or total Aß, suggesting that ubiquilin-1 in particular enhances γ-secretase-mediated ε-site cleavage. This is supported by the finding that TV1 also significantly increased the level of intracellular domain generation of another γ-secretase substrate, leukocyte common antigen-related (LAR) phosphatase. However, in these cells, the increase in AICD levels was abolished, suggesting a preference of the γ-secretase for LAR over APP. TV2, another ubiquilin-1 variant that lacks the protein fragment encoded by exon 8, did not increase the level of AICD generation like TV1 did. The subcellular and plasma membrane localization of APP or γ-secretase complex components PS1 and nicastrin was not altered in TV1-overexpressing cells. Moreover, the effects of TV1 were not mediated by altered expression or APP binding of FE65, an adaptor protein thought to regulate AICD generation and stability. These data suggest that ubiquilin-1 modulates γ-secretase-mediated ε-site cleavage and thus may play a role in regulating γ-secretase cleavage of various substrates.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Secretases da Proteína Precursora do Amiloide/efeitos dos fármacos , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/biossíntese , Proteínas de Ciclo Celular/biossíntese , Linhagem Celular Tumoral , Humanos , Fragmentos de Peptídeos/biossíntese , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/biossíntese , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/efeitos dos fármacos
4.
J Biol Chem ; 284(49): 34433-43, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19815556

RESUMO

Seladin-1 is a neuroprotective protein selectively down-regulated in brain regions affected in Alzheimer disease (AD). Seladin-1 protects cells against beta-amyloid (Abeta) peptide 42- and oxidative stress-induced apoptosis activated by caspase-3, a key mediator of apoptosis. Here, we have employed RNA interference to assess the molecular effects of seladin-1 down-regulation on the beta-secretase (BACE1) function and beta-amyloid precursor protein (APP) processing in SH-SY5Y human neuroblastoma cells in both normal and apoptotic conditions. Our results show that approximately 60% reduction in seladin-1 protein levels, resembling the decrease observed in AD brain, did not significantly affect APP processing or Abeta secretion in normal growth conditions. However, under apoptosis, seladin-1 small interfering RNA (siRNA)-transfected cells showed increased caspase-3 activity on average by 2-fold when compared with control siRNA-transfected cells. Increased caspase-3 activity coincided with a significant depletion of the BACE1-sorting protein, GGA3 (Golgi-localized gamma-ear-containing ADP-ribosylation factor-binding protein), and subsequently augmented BACE1 protein levels and activity. Augmented BACE1 activity in turn correlated with the enhanced beta-amyloidogenic processing of APP and ultimately increased Abeta production. These adverse changes associated with decreased cell viability in seladin-1 siRNA-transfected cells under apoptosis. No changes in GGA3 or BACE1 levels were found after seladin-1 knockdown in normal growth conditions. Collectively, our results suggest that under stress conditions, reduced seladin-1 expression results in enhanced GGA3 depletion, which further leads to augmented post-translational stabilization of BACE1 and increased beta-amyloidogenic processing of APP. These mechanistic findings related to seladin-1 down-regulation are important in the context of AD as the oxidative stress-induced apoptosis plays a key role in the disease pathogenesis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Secretases da Proteína Precursora do Amiloide/biossíntese , Apoptose , Ácido Aspártico Endopeptidases/biossíntese , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/biossíntese , Peptídeos beta-Amiloides/química , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Regulação para Baixo , Humanos , Microscopia Confocal/métodos , Modelos Biológicos , Estresse Oxidativo , Estrutura Terciária de Proteína , Transfecção
5.
Biochem Soc Trans ; 38(Pt 1): 150-5, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20074050

RESUMO

Abnormal protein aggregation and intracellular or extracellular accumulation of misfolded and aggregated proteins are key events in the pathogenesis of different neurodegenerative diseases. Furthermore, endoplasmic reticulum stress and impairment of the ubiquitin-proteasome system probably contribute to neurodegeneration in these diseases. A characteristic feature of AD (Alzheimer's disease) is the abnormal accumulation of Abeta (amyloid beta-peptide) in the brain. Evidence shows that the AD-associated PS (presenilin) also forms aggregates under certain conditions and that another AD-associated protein, ubiquilin-1, controls protein aggregation and deposition of aggregated proteins. Here, we review the current knowledge of ubiquilin-1 and PS in protein aggregation and related events that potentially influence neurodegeneration.


Assuntos
Doença de Alzheimer , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Retículo Endoplasmático/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Estresse Oxidativo , Presenilinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Dobramento de Proteína
6.
Am J Med Genet B Neuropsychiatr Genet ; 150B(5): 747-50, 2009 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-19016491

RESUMO

Granulin protein plays an important role in neurite outgrowth and neuronal survival. Recently, it was shown that mutations in granulin (GRN) gene cause tau-negative frontotemporal dementia supporting the idea that granulin is involved in neurodegeneration. Here we have investigated whether genetic variability in the GRN gene influences also the risk of developing Alzheimer's disease (AD). Genotyping of six single nucleotide polymorphisms (SNPs) in the GRN gene among 512 AD patients and 649 control subjects originating from Finland did not show significant association with AD. However, stratification according to gender revealed a significant male-specific allele, genotype and haplotype association between AD and GRN SNPs rs4792939, rs850713, and rs5848. These data suggest that genetic variability in the GRN gene may also increase the risk for developing AD in a gender-specific manner.


Assuntos
Doença de Alzheimer/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Finlândia , Frequência do Gene , Genética Populacional , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Progranulinas , Caracteres Sexuais , Adulto Jovem
7.
Eur J Hum Genet ; 16(2): 171-5, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18043715

RESUMO

Familial early-onset Alzheimer's disease with cerebral amyloid angiopathy (EOAD/CAA) was recently associated with duplications of the gene for the amyloid-beta precursor protein (APP). In this study, we have screened for duplications of APP in patients with EOAD from Sweden and Finland. Seventy-five individuals from families with EOAD and 66 individuals with EOAD without known familial inheritance were screened by quantitative PCR. On the basis of the initial results, a portion of the samples was also investigated with quantitative multiplex PCR. No duplications of APP were identified, whereby we conclude that this is not a common cause of EOAD in the Swedish and Finnish populations, at least not in our collection of families and cases.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Duplicação Gênica , Adulto , Idade de Início , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/epidemiologia , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/epidemiologia , Angiopatia Amiloide Cerebral/genética , Feminino , Finlândia , Dosagem de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Suécia
8.
Epilepsy Res ; 112: 43-55, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25847338

RESUMO

Patients with Alzheimer's disease are at increased risk for unprovoked seizures and epilepsy compared with age-matched controls. Experimental evidence suggests that neuronal hyperexcitability and epilepsy can be triggered by amyloid-ß (Aß), the main component of amyloid plaques. Previous studies demonstrated that the administration of an anticonvulsant and histone deacetylase inhibitor, valproic acid, leads to a long-lasting reduction in Aß levels. Here we used an APdE9 mouse model of Alzheimer's disease with overproduction of Aß to assess whether treatment with valproic acid initiated immediately after epilepsy onset modifies the occurrence of epileptiform activity. We also analyzed whether the effect is long-lasting and associated with antiamyloidogenesis and histone-modifications. Male APdE9 mice (15 week old) received daily intraperitoneal injections of 30mg/kg valproic acid for 1 week. After a 3-week wash-out, the same animals received injections of a higher dose of valproic acid (300mg/kg) daily for 1 week. Long-term video-electroencephalography monitoring was performed prior to, during, and after the treatments. Aß and total histone H3 and H4 acetylation levels were measured at 1 month after the final valproic acid treatment. While 30mg/kg valproic acid reduced spontaneous seizures in APdE9 mice (p<0.05, chi-square), epileptiform discharges were not reduced. Administration of 300mg/kg valproic acid, however, reduced epileptiform discharges in APdE9 mice for at least 1 week after treatment discontinuation (p<0.05, Wilcoxon test), but there was no consistent long-term effects on epileptiform activity after treatment withdrawal. Further, we found no long-lasting effect on Aß levels (p>0.05, Mann-Whitney test), only a meager increase in global acetylation of histone H3 (p<0.05), and no effects on H4 acetylation (p>0.05). In conclusion, valproic acid treatment of APdE9 mice at the stage when amyloid plaques are beginning to develop and epileptiform activity is detected reduced the amount of epileptiform activity, but the effect disappeared after treatment discontinuation.


Assuntos
Doença de Alzheimer/complicações , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Ácido Valproico/uso terapêutico , Acetilação/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/mortalidade , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Epilepsia/mortalidade , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Presenilina-1/genética , Distribuição Aleatória , Fatores de Tempo , Gravação em Vídeo
9.
Neurobiol Aging ; 36(2): 1221.e15-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25281018

RESUMO

In this study, we have assessed the expression and splicing status of genes involved in the pathogenesis or affecting the risk of Alzheimer's disease (AD) in the postmortem inferior temporal cortex samples obtained from 60 subjects with varying degree of AD-related neurofibrillary pathology. These subjects were grouped based on neurofibrillary pathology into 3 groups: Braak stages 0-II, Braak stages III-IV, and Braak stages V-VI. We also examined the right frontal cortical biopsies obtained during life from 22 patients with idiopathic shunt-responding normal pressure hydrocephalus, a disease that displays similar pathologic alterations as seen in AD. These 22 patients were categorized according to dichotomized amyloid-ß positive or negative pathology in the biopsies. We observed that the expression of FRMD4A significantly decreased, and the expression of MS4A6A significantly increased in relation to increasing AD-related neurofibrillary pathology. Moreover, the expression of 2 exons in both CLU and TREM2 significantly increased with increase in AD-related neurofibrillary pathology. However, a similar trend toward increased expression in CLU and TREM2 was observed with most of the studied exons, suggesting a global change in the expression rather than altered splicing. Correlation of gene expression with well-established AD-related factors, such as α-, ß-, and γ-secretase activities, brain amyloid-ß42 levels, and cerebrospinal fluid biomarkers, revealed a positive correlation between ß-secretase activity and the expression of TREM2 and BIN1. In expression quantitative trait loci analysis, we did not detect significant effects of the risk alleles on gene expression or splicing. Analysis of the normal pressure hydrocephalus biopsies revealed no differences in the expression or splicing profiles of the studied genes between amyloid-ß positive and negative patients. Using the protein-protein interaction-based in vitro pathway analysis tools, we found that downregulation of FRMD4A associated with increased APP-ß-secretase interaction, increased amyloid-ß40 secretion, and altered phosphorylation of tau. Taken together, our results suggest that the expression of FRMD4A, MS4A6A, CLU, and TREM2 is altered in relation to increasing AD-related neurofibrillary pathology, and that FRMD4A may play a role in amyloidogenic and tau-related pathways in AD. Therefore, investigation of gene expression changes in the brain and effects of the identified genes on disease-associated pathways in vitro may provide mechanistic insights on how alterations in these genes may contribute to AD pathogenesis.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Predisposição Genética para Doença/genética , Transcriptoma/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Feminino , Expressão Gênica , Humanos , Técnicas In Vitro , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurofibrilas/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Risco , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
10.
J Alzheimers Dis ; 43(2): 565-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25096612

RESUMO

BACKGROUND: Several risk loci for Alzheimer's disease (AD) have been identified during recent years in large-scale genome-wide association studies. However, little is known about the mechanisms by which these loci influence AD pathogenesis. OBJECTIVE: To investigate the individual and combined risk effects of the newly identified AD loci. METHODS: Association of 12 AD risk loci with AD and AD-related cerebrospinal fluid (CSF) biomarkers was assessed. Furthermore, a polygenic risk score combining the effect sizes of the top 22 risk loci in AD was calculated for each individual among the clinical and neuropathological cohorts. Effects of individual risk loci and polygenic risk scores were assessed in relation to CSF biomarker levels as well as neurofibrillary pathology and different biochemical measures related to AD pathogenesis obtained from the temporal cortex. RESULTS: Polygenic risk scores associated with CSF amyloid-ß42 (Aß42) levels in the clinical cohort, and with soluble Aß42 levels and γ-secretase activity in the neuropathological cohort. The γ-secretase effect was independent of APOE. APOE-ε4 associated with CSF Aß42 (p < 0.001) levels. For the other risk loci, no significant associations with AD risk or CSF biomarkers were detected after multiple testing correction. CONCLUSIONS: AD risk loci polygenically contribute to Aß pathology in the CSF and temporal cortex, and this effect is potentially associated with increased γ-secretase activity.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Encéfalo/metabolismo , Estudos de Coortes , Progressão da Doença , Feminino , Testes Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Polimorfismo de Nucleotídeo Único
11.
Expert Opin Ther Targets ; 17(7): 795-810, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23600477

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is a common neurodegenerative disorder affecting an increasing number of people worldwide as the population ages. Currently, there are no drugs available that could prevent AD pathogenesis or slow down its progression. Increasing evidence links ubiquilin-1, an ubiquitin-like protein, into the pathogenic mechanisms of AD and other neurodegenerative diseases. Ubiquilin-1 has been shown to play a key role in the regulation of the levels, subcellular targeting, aggregation and degradation of various neurodegenerative disease-associated proteins. These include the amyloid precursor protein and presenilins that are intimately involved in the mechanisms of AD. AREAS COVERED: Here, the properties and diverse functions of ubiquilin-1 protein in the context of the pathogenesis of AD and other neurodegenerative disorders are discussed. This review recapitulates the available knowledge on the involvement of ubiquilin-1 in the genetic and molecular mechanisms in AD. Furthermore, the association of ubiquilin-1 with specific proteins and mechanisms involved in the pathogenesis of neurodegenerative diseases is described and the known ubiquilin-1-interacting proteins summarized. EXPERT OPINION: The variety of ubiquilin-1-interacting proteins and its central role in the regulation of protein levels and degradation provides a number of novel candidates and approaches for future research and drug discovery.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Relacionadas à Autofagia , Humanos
12.
J Alzheimers Dis ; 33(1): 23-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22890097

RESUMO

Genetic variants in the granulin (GRN) gene have been shown to increase the risk of Alzheimer's disease (AD). Here, we report that the A allele of rs5848 in GRN reduces plasma granulin levels in a dose-dependent manner in a clinically-defined AD sample cohort. Similarly, the mRNA levels of granulin were decreased with respect to A allele of rs5848 in the inferior temporal cortex of neuropathologically confirmed AD patients. Our findings suggest that the A allele of rs5848 is functionally relevant by reducing the expression of granulin.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patologia , Regulação para Baixo/genética , Variação Genética/genética , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/irrigação sanguínea , Estudos de Coortes , Feminino , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Masculino , Pessoa de Meia-Idade , Oxirredução , Progranulinas
13.
PLoS One ; 8(11): e80700, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278306

RESUMO

Alzheimer's disease (AD) has been postulated to involve defects in the clearance of amyloid-ß (Aß). Activation of liver X receptor α (LXRα) increases the expression of apolipoprotein E (ApoE) as well as cholesterol transporters ABCA1 and ABCG1, leading to augmented clearance of Aß. We have previously shown that the C allele of rs7120118 in the NR1H3 gene encoding LXRα reduces the risk of AD. Here, we wanted to assess whether the rs7120118 variation affects the progression of AD and modulates the expression of NR1H3 and its downstream targets APOE, ABCA1 and ABCG1.We utilized tissue samples from the inferior temporal cortex of 87 subjects, which were subdivided according to Braak staging into mild, moderate and severe AD groups on the basis of AD-related neurofibrillary pathology. APOE ε4 allele increased soluble Aß42 levels in the tissue samples in a dose-dependent manner, but did not affect the expression status of APOE. In contrast, the CC genotype of rs7120118 was underrepresented in the severe group, although this result did not reach statistical significance. Also, patients with the CC genotype of rs7120118 showed significantly decreased soluble Aß42 levels as compared to the patients with TT genotype. Although the severity of AD did not affect NR1H3 expression, the mRNA levels of NR1H3 among the patients with CT genotype of rs7120118 were significantly increased as compared to the patients with TT genotype. These results suggest that genetic variation in NR1H3 modulates the expression of LXRα and the levels of soluble Aß42.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Progressão da Doença , Predisposição Genética para Doença , Receptores Nucleares Órfãos/genética , Polimorfismo de Nucleotídeo Único/genética , Idoso de 80 Anos ou mais , Alelos , Doença de Alzheimer/líquido cefalorraquidiano , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteína E4/genética , Demografia , Feminino , Regulação da Expressão Gênica , Humanos , Receptores X do Fígado , Masculino , Receptores Nucleares Órfãos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Proteínas tau/metabolismo
14.
Commun Integr Biol ; 4(4): 428-32, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21966562

RESUMO

Controlled management of protein levels and quality is essential for normal cellular function. Specific molecular chaperones and foldases monitor the levels and assist correct folding of proteins. The ubiquitin-proteasome system recognizes and degrades misfolded proteins that can otherwise be harmful to cells. However, when misfolded or aggregated proteins excessively accumulate, they may be sequestered to the microtubule-organizing center to form aggresomes. These may then be removed from cells by autophagocytosis. Abnormal protein accumulation and aggregation is a common hallmark of many neurodegenerative diseases. In a recent study, we provide evidence that specific transcript variants (TVs) of ubiquilin-1, which are genetically and functionally associated to Alzheimer's disease (AD), regulate proteasomal and aggresomal targeting of presenilin-1 (PS1), a key player in AD pathogenesis. Our study together with current data provide interesting implications for ubiquilin-1 and its TVs in the pathogenesis of AD and other neurodegenerative diseases involving abnormal protein aggregation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA