RESUMO
Background & objectives: Infection from fluoroquinolone-resistant extra-intestinal Escherichia coli is a global concern. In this study, isolation and characterization of fluoroquinolone-resistant extra-intestinal E. coli isolates obtained from hospital samples were undertaken to detect plasmid-mediated quinolone resistance (PMQR) genes. Methods: Forty three isolates of E. coli obtained from patients with extra-intestinal infections were subjected to antibiogram to detect fluoroquinolone resistance. The mechanism of fluoroquinolone resistance was determined by the detection of PMQR genes and mutations in quinolone resistance determining region (QRDR). Results: Of the 43 isolates, 36 were resistant to nalidixic acid (83.72%) and 28 to ciprofloxacin (65.11%). Eight E. coli isolates showed total resistance to both the antimicrobials without any minimum inhibitory concentration. The detection of PMQR genes with qnr primers showed the presence of qnrA in two, qnrB in six and qnrS in 21 isolates. The gene coding for quinolone efflux pump (qepA) was not detected in any of the isolates tested. The presence of some unexpressed PMQR genes in fluoroquinolone sensitive isolates was also observed. Interpretation & conclusions: The detection of silent PMQR genes as observed in the present study presents a risk of the transfer of the silent resistance genes to other microorganisms if present in conjugative plasmids, thus posing a therapeutic challenge to the physicians. Hence, frequent monitoring is to be done for all resistance determinants.
Assuntos
Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/efeitos adversos , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Ciprofloxacina/efeitos adversos , Ciprofloxacina/farmacologia , DNA Topoisomerases/efeitos dos fármacos , DNA Topoisomerases/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Fluoroquinolonas/uso terapêutico , Humanos , Plasmídeos/efeitos dos fármacos , Plasmídeos/genéticaRESUMO
To understand antimicrobial resistance (AMR) patterns and mechanisms of horizontal gene transfer in human-associated environments is essential to AMR surveillance. Gram-negative bacteria (1122 isolates) from food-animal environments were characterized for antimicrobial susceptibility and AMR genes. Seventy five per cent of the isolates (837 of 1122) were resistant to at least one of the antibiotics tested. Resistance to more than three groups of antimicrobials (multidrug resistance) was observed in 43 isolates with most often encountered (12 of 43) resistance to ß-lactams, tetracycline, quinolones and nitrofurantoin. The profile of frequently reported plasmid-mediated resistance gene in these isolates was determined. The mobility of these elements as plasmids or phages was examined. The blaCTX-M gene was present in the plasmid of 61 per cent and packed in induced phage fractions in 72 per cent of the isolates and blaTEMin 69 per cent phage fractions compared to 15 per cent presence in the plasmid.
Assuntos
Infecções Bacterianas/epidemiologia , Farmacorresistência Bacteriana/genética , Microbiologia Ambiental , beta-Lactamases/genética , Animais , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Transferência Genética Horizontal/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/patogenicidade , Humanos , Índia/epidemiologia , Testes de Sensibilidade Microbiana , Plasmídeos/genéticaRESUMO
Background & objectives: The resistance to antibiotics in pathogenic bacteria has increased at an alarming rate in recent years due to the indiscriminate use of antibiotics in healthcare, livestock and aquaculture. In this context, it is necessary to monitor the antibiotic resistance patterns of bacteria isolated from the environmental samples. This study was conducted to determine the phenotypic and genotypic profile of antimicrobial resistance in Gram-negative bacteria isolated from environmental samples. Methods: Two hundred and fifty samples were collected from different sources, viz. fish and fishery products (99), livestock wastes (81) and aquaculture systems (70), in and around Mangaluru, India. Isolation, identification and antimicrobial profiling were carried out as per standard protocols. The isolates were screened for the presence of resistance genes using PCR. Results: A total of 519 Gram-negative bacteria comprising Escherichia coli (116), Salmonella spp. (14), Vibrio spp. (258), Pseudomonas spp. (56), Citrobacter spp. (26) and Proteus spp. (49) were isolated and characterized from 250 samples obtained from different sources. A total of 12 antibiotics were checked for their effectiveness against the isolates. While 31.6 per cent of the isolates were sensitive to all the antibiotics used, 68.4 per cent of the isolates showed resistance to at least one of the antibiotics used. One-third of the isolates showed multidrug resistance. Maximum resistance was observed for ampicillin (43.4%), followed by nitrofurantoin (20.8%). Least resistance was seen for carbapenems and chloramphenicol. PCR profiling of the resistant isolates confirmed the presence of resistance genes corresponding to their antibiotic profile. Interpretation & conclusions: This study results showed high rate of occurrence of antimicrobial resistance and their determinants in Gram-negative bacteria isolated from different environmental sources.
Assuntos
Antibacterianos/efeitos adversos , Farmacorresistência Bacteriana/genética , Microbiologia Ambiental , Bactérias Gram-Negativas/genética , Antibacterianos/uso terapêutico , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Humanos , Índia/epidemiologia , Testes de Sensibilidade MicrobianaRESUMO
Antibiotic resistance and virulence factors in avian pathogenic Escherichia coli (APEC) have become significant concerns, contributing to adverse environmental effects. The extensive use of antibiotics in poultry farming has resulted in the emergence of antibiotic-resistant APEC strains. This study prioritizes the molecular screening of APEC to uncover their antibiotic resistance and virulence attributes, with specific attention to their environmental impact. To address the imperative of understanding APEC pathogenesis, our study analyzed 50 poultry waste samples including 10 poultry litter, 15 fecal matter, 15 wastewater, and 10 anatomical waste samples. For the presence of virulence genes, 35 Escherichia coli isolates were subjected to molecular characterization. Amongst these, 27 were APEC strains demonstrating the presence of at least four virulence genes each. Notably, virulence genes such as fimH, ompA, ybjX, waaL, cvaC, hlyF, iss, ompT, and iroN were observed among all the E. coli isolates. Furthermore, eleven of the APEC strains exhibited resistance to tetracycline, ampicillin, sulphonamides, and fluoroquinolones.These findings highlight the role of APEC as a potential source of environmental pollution serving as a reservoir for virulence and resistance genes. Understanding the dynamics of antibiotic resistance and virulence in APEC is essential due to its potential threat to broiler chickens and the broader population through the food chain, intensifying concerns related to environmental pollution. Recognizing the ecological impact of APEC is essential for developing effective strategies to mitigate environmental pollution and safeguard the health of ecosystems and human populations.
Assuntos
Antibacterianos , Galinhas , Infecções por Escherichia coli , Escherichia coli , Fezes , Aves Domésticas , Fatores de Virulência , Animais , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Fatores de Virulência/genética , Antibacterianos/farmacologia , Galinhas/microbiologia , Virulência/genética , Fezes/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Aves Domésticas/microbiologia , Farmacorresistência Bacteriana , Águas Residuárias/microbiologia , Doenças das Aves Domésticas/microbiologia , Testes de Sensibilidade MicrobianaRESUMO
Microplastics (MPs) have emerged as a major environmental problem in freshwater and marine environments. The effects of these polymers on aquatic life are well studied; however, there is limited knowledge of MP-associated health hazards in humans. We estimated the presence of MPs in different brands of bottled water available in India using the Nile red (NR) staining method. The FTIR examination revealed the presence of polystyrene (PS), polyethylene (PE), and polyamide (PA) in the bottled water samples with PE being the most prevalent one. Zebrafish embryos exposed to different concentrations of fluorescent-tagged polyethylene microplastics (PE-MPs) (10-150 µm) showed accumulation patterns at different time points in various organs. The exposure to PE MPs induced a concentration-dependent ROS activity. The expression of first-line antioxidative defense marker genes were significantly downregulated in embryos exposed to varying concentrations of PE-MPs, suggesting concentration and time-dependent effects on zebrafish. The results of this study suggest that the potential negative consequences on human health could be due to the oxidative stress and time-dependent toxicity of MPs.
Assuntos
Água Potável , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Microplásticos/metabolismo , Água Potável/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Peixe-Zebra/metabolismo , Poluentes Químicos da Água/análise , Polietileno/análiseRESUMO
The use of herbal products as traditional medicines has been a practice in India for centuries. Due to high ethnic diversity, the pool of herbal medicines is enormous, and they are often preferred over modern medicines in certain parts of the country. Cancer is one of the major non-communicable diseases affecting people worldwide. Despite considerable research, cancer is a disease that is still not understood completely, and there have been constant efforts towards the identification of novel drugs or approaches in cancer management. Parkia javanica, an important medicinal plant and a rich source of flavonoids and terpenoids, is widely studied for its antioxidant and anti-inflammatory activities. Traditionally, the fruit and bark extracts of P. javanica find use as home remedy for dysentery and piles in NE India. Moreover, the fruits are consumed by the people of North-East (NE) India as vegetables, either in steamed or cooked form. In this study, crude extracts of P. javanica fruit and bark were obtained, the sub-lethal dose was determined and were then analyzed for anti-proliferative and anti-angiogenic properties using a battery of assays in zebrafish embryos. The sub-lethal concentration 50 (LC50) was found to be 28.66 mg/L and 346.66 mg/L for bark and fruit extract respectively, indicating a decreased toxicity of the fruit extract compared to that of the bark. The anti-proliferative and anti-angiogenic properties were more pronounced for the fruit extract compared to the bark extract. Although preliminary, the results of the study suggest that P. javanica fruits possess potent anti-angiogenic and anti-proliferative properties, which can be further studied for the isolation of active phytochemicals for use as therapeutic agents.
Assuntos
Fabaceae , Plantas Medicinais , Animais , Frutas/química , Extratos Vegetais/química , Peixe-Zebra , Casca de Planta/química , Antioxidantes/químicaRESUMO
Staphylococcus aureus-mediated food poisoning is a primary concern worldwide. The presence of the organism in food is an indicative of poor sanitation during production, and it is essential to have efficient methods for detecting this pathogen. A novel molecular diagnostic technique called loop-mediated isothermal amplification (LAMP) serves as a rapid and sensitive detection method, which amplifies nucleic acids at isothermal conditions. In this study, a LAMP-based diagnostic assay was developed to detect Staphylococcus aureus (S. aureus) using two target genes femA and arcC. The optimum reaction temperature was found to be 65 °C and at 60 °C for femA and arcC genes, respectively. The developed assay specifically amplified DNA from S. aureus, not from other related bacterial species and compared to PCR, and a 100-fold higher sensitivity was observed. Furthermore, the LAMP assay could detect the pathogen from food samples mainly meat and dairy samples when analyzed in both intact and enriched conditions. Thirteen samples were found positive for S. aureus with LAMP showing a greater number of positive samples in comparison to PCR. This study established a highly sensitive and a rapid diagnostic procedure for the detection and surveillance of this major foodborne pathogen.
Assuntos
Técnicas de Amplificação de Ácido Nucleico , Staphylococcus aureus , Laticínios , Carne , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Staphylococcus aureus/genéticaRESUMO
The study investigated the gut microbial diversity and the role of gut-associated microorganisms in modulating the immune responses in normal (wild-type) and TP53M214K (cancer-prone) zebrafish. Biochemical tests, genus/species-specific PCR, and 16S rDNA sequencing were performed to characterize the bacteria isolated from the gut of wild-type (WT) and cancer-prone zebrafish. Gut microbiome analysis revealed greater diversity but reduced bacterial load in wild-type zebrafish compared with cancer-prone zebrafish, which had lesser diversity but higher bacterial load. Interestingly, the gut in cancer-prone fish showed selective colonization by opportunistic pathogens. The bacterial isolates showed resistance to antibiotics such as tetracycline, nalidixic acid, and ciprofloxacin. Gnotobiotic zebrafish embryos were established, and mono-colonization with the isolated bacteria was done to examine the expression of anti-inflammatory genes using real-time PCR. Variable expression of IL10 and IL4 was observed in germ-free (GF) wild-type embryos when mono-colonized with Staphylococcus sciuri and Vibrio cholerae. In contrast, germ-free TP53 mutant embryos showed a consistent downregulation of both the anti-inflammatory genes. Thus, a better immune response in WT embryos against S. sciuri or V. cholerae infection than in cancer-prone fish was observed, suggesting that genetic predisposition could contribute to disabling the immune system against infection.