Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 613(7942): 60-65, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288749

RESUMO

Dye-sensitized solar cells (DSCs) convert light into electricity by using photosensitizers adsorbed on the surface of nanocrystalline mesoporous titanium dioxide (TiO2) films along with electrolytes or solid charge-transport materials1-3. They possess many features including transparency, multicolour and low-cost fabrication, and are being deployed in glass facades, skylights and greenhouses4. Recent development of sensitizers5-10, redox mediators11-13 and device structures14 has improved the performance of DSCs, particularly under ambient light conditions14-17. To further enhance their efficiency, it is pivotal to control the assembly of dye molecules on the surface of TiO2 to favour charge generation. Here we report a route of pre-adsorbing a monolayer of a hydroxamic acid derivative on the surface of TiO2 to improve the dye molecular packing and photovoltaic performance of two newly designed co-adsorbed sensitizers that harvest light quantitatively across the entire visible domain. The best performing cosensitized solar cells exhibited a power conversion efficiency of 15.2% (which has been independently confirmed) under a standard air mass of 1.5 global simulated sunlight, and showed long-term operational stability (500 h). Devices with a larger active area of 2.8 cm2 exhibited a power conversion efficiency of 28.4% to 30.2% over a wide range of ambient light intensities, along with high stability. Our findings pave the way for facile access to high-performance DSCs and offer promising prospects for applications as power supplies and battery replacements for low-power electronic devices18-20 that use ambient light as their energy source.

2.
Chem Soc Rev ; 48(14): 3705-3722, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31120048

RESUMO

To advance the progress of photoelectrolysis, various promising devices integrated with p- and n-type photocatalysts and dye sensitized photoelectrodes have been systematically studied. This review discusses, from theory to practice, an integration strategy for state-of-the-art dye sensitized solar cells (DSSCs) with potential p- and n-type photo-electrocatalysts or directly with dye sensitized photoanodes and cathodes for hydrogen and oxygen production through water splitting. Thorough insight into the theoretical approach which systematically drives the photoelectrolysis reaction directly or in a coupled mode, with diverse configurations of DSSCs and other photovoltaic (PV) cells, is crucial to understand the underlying fundamental concepts and elucidate trends in such reactions, and will serve as a guide to design new electrocatalysts and their integration with new PV devices, while simultaneously underlining major gaps that are required to address the challenges. Likewise, challenges, opportunities and frontiers in tandem and hybrid perovskite electrolysis processes are also discoursed in the present tutorial review. We illustrate our analysis by encompassing these integrated systems to photo-electrolysis, artificial photosynthesis such as CO2 conversion into value-added chemical reduction-products, where advancements in new catalysts and solution-processed inexpensive PV devices can certainly enrich the overall performance of the renewable production of solar fuels, including solar driven carbonaceous fuels.

3.
Phys Chem Chem Phys ; 21(24): 13047-13057, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31168549

RESUMO

Fast recombination of electrons from semiconductors with the oxidized redox species in the electrolyte represents a major bottleneck in the improvement of ZnO-based dye-sensitized solar cells (DSSCs). While processes at the semiconductor-electrolyte interface are well studied on TiO2 electrodes, the interactions of the ZnO surface with the electrolyte solution in DSSCs are less explored. This work aims at clarifying the different impact of the two contrasting redox couples I3-/I- or [Co(bpy-pz)2]3+/2+ (bpy-pz = bis(6-(1H-pyrazol-1-yl)-2,2'-bipyridine)) in electrolytes containing either no additives or Li+ ions and/or 4-tert-butlypyridine (TBP) in DSSCs using screen-printed nanoparticulate TiO2 (NP-TiO2) or electrodeposited ZnO (ED-ZnO) photoanodes sensitized with the indoline dye DN216. A detailed photoelectrochemical study is performed to investigate light absorption, charge transfer and mass transport in these cells. We demonstrate that the chemical nature of the semiconductor directly influences the affinity of adsorbates. This drastically influences the energy levels and recombination kinetics at the semiconductor-electrolyte interface, electron and ion transport in the porous system as well as light absorption of dye molecules by the Stark effect. The present investigation reveals the origin of major performance losses in DSSCs based on ED-ZnO photoanodes as well as the relevance of ionic interactions with NP-TiO2 photoanodes that can both serve as the starting point for rationally guided improvement of their conversion efficiencies.

4.
Chimia (Aarau) ; 73(11): 894-905, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753070

RESUMO

Dye-sensitized semiconductor oxide photoelectrodes in which light is absorbed by a monomolecular layer of dye chemisorbed on a porous oxide substrate have attracted considerable interest in the last 35 years, mainly for the conversion of sunlight to electricity, in dye-sensitized solar cells (DSSCs) with maximal efficiencies in the range 10-15%, and, most recently, as dye-sensitized photoelectrochemical cells (DSPECs) for the generation of solar fuels. In the latter direction, considerable progress has been achieved but the efficiency is notably lower than for electricity generation. In the present review, the basic physicochemical principles of the DSSC and DSPEC operation are described, several keynote results reported, and the factors limiting the performance and necessitating further research highlighted.

5.
Chimia (Aarau) ; 71(11): 754-761, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29179799

RESUMO

The achievement of high efficiency and high stability in perovskite solar cells (PSCs) requires optimal selection and evaluation of the various components. After a brief introduction to the perovskite materials and their historical evolution, the first part is devoted to the hole transporting material (HTM), between photoelectrode and dark counter electrode. The basic requirements for an efficient HTM are stated. Subsequently, the most used HTM, spiro-OMeTAD, is compared to alternative HTMs, both small-molecule size species and electronically conducting polymers. The second part is devoted to additives related to the performance of the perovskite light-absorbing material itself. These are related either to the modification of the composition of the material itself or to the optimization of the morphology during the perovskite preparation stage, and their effect is in the enhancement of the power conversion efficiency, the long-term stability, or the reproducibility of the properties of the PSCs. Finally, a number of spectroscopic methods based on the UV-Vis part of the electromagnetic spectrum useful for characterizing the different perovskite material types are described in the last part of this review.

6.
J Am Chem Soc ; 138(45): 15087-15096, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27749064

RESUMO

Redox mediators play a major role determining the photocurrent and the photovoltage in dye-sensitized solar cells (DSCs). To maintain the photocurrent, the reduction of oxidized dye by the redox mediator should be significantly faster than the electron back transfer between TiO2 and the oxidized dye. The driving force for dye regeneration with the redox mediator should be sufficiently low to provide high photovoltages. With the introduction of our new copper complexes as promising redox mediators in DSCs both criteria are satisfied to enhance power conversion efficiencies. In this study, two copper bipyridyl complexes, Cu(II/I)(dmby)2TFSI2/1 (0.97 V vs SHE, dmby = 6,6'-dimethyl-2,2'-bipyridine) and Cu(II/I)(tmby)2TFSI2/1 (0.87 V vs SHE, tmby = 4,4',6,6'-tetramethyl-2,2'-bipyridine), are presented as new redox couples for DSCs. They are compared to previously reported Cu(II/I)(dmp)2TFSI2/1 (0.93 V vs SHE, dmp = bis(2,9-dimethyl-1,10-phenanthroline). Due to the small reorganization energy between Cu(I) and Cu(II) species, these copper complexes can sufficiently regenerate the oxidized dye molecules with close to unity yield at driving force potentials as low as 0.1 V. The high photovoltages of over 1.0 V were achieved by the series of copper complex based redox mediators without compromising photocurrent densities. Despite the small driving forces for dye regeneration, fast and efficient dye regeneration (2-3 µs) was observed for both complexes. As another advantage, the electron back transfer (recombination) rates were slower with Cu(II/I)(tmby)2TFSI2/1 as evidenced by longer lifetimes. The solar-to-electrical power conversion efficiencies for [Cu(tmby)2]2+/1+, [Cu(dmby)2]2+/1+, and [Cu(dmp)2]2+/1+ based electrolytes were 10.3%, 10.0%, and 10.3%, respectively, using the organic Y123 dye under 1000 W m-2 AM1.5G illumination. The high photovoltaic performance of Cu-based redox mediators underlines the significant potential of the new redox mediators and points to a new research and development direction for DSCs.

7.
Chemphyschem ; 17(10): 1441-5, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-26919196

RESUMO

A high power conversion efficiency (PCE) of 5.5 % was achieved by efficiently incorporating a diketopyrrolopyrrole-based dye with a conducting polymer poly(3,4-ethylenediothiophene) (PEDOT) hole-transporting material (HTM) that was formed in situ, compared with a PCE of 2.9 % for small molecular spiro-OMeTAD-based solid-state dye solar cells (sDSCs). The high PCE for PEDOT-based sDSCs is mainly attributed to the significantly enhanced charge-collection efficiency, as a result of the three-order-of-magnitude higher hole conductivity (0.53 S cm(-1) ) compared with that of the widely used low molecular weight HTM spiro-OMeTAD (3.5×10(-4)  S cm(-1) ).

8.
Anal Chem ; 87(7): 3942-8, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25751409

RESUMO

Solid-state dye-sensitized solar cells (sDSCs) are devoid of such issues as electrolyte evaporation or leakage and electrode corrosion, which are typical for traditional liquid electrolyte-based DSCs. Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most popular and efficient p-type conducting polymers that are used in sDSCs as a solid-state hole-transporting material. The most convenient way to deposit this insoluble polymer into the dye-sensitized mesoporous working electrode is in situ photoelectrochemical polymerization. Apparently, the structure and the physicochemical properties of the generated conducting polymer, which determine the photovoltaic performance of the corresponding solar cell, can be significantly affected by the preparation conditions. Therefore, a simple and fast analytical method that can reveal information on polymer chain length, possible chemical modifications, and impurities is strongly required for the rapid development of efficient solar energy-converting devices. In this contribution, we applied matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the analysis of PEDOT directly on sDSCs. It was found that the PEDOT generated in aqueous micellar medium possesses relatively shorter polymeric chains than the PEDOT deposited from an organic medium. Furthermore, the micellar electrolyte promotes a transformation of one of the thiophene terminal units to thiophenone. The introduction of a carbonyl group into the PEDOT molecule impedes the growth of the polymer chain and reduces the conductivity of the final polymer film. Both the simplicity of sample preparation (only application of the organic matrix onto the solar cell is needed) and the rapidity of analysis hold the promise of making MALDI MS an essential tool for the physicochemical characterization of conducting polymer-based sDSCs.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/análise , Corantes/química , Técnicas Eletroquímicas , Micelas , Polímeros/análise , Energia Solar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tiofenos/química , Processos Fotoquímicos , Polimerização , Água/química
9.
Phys Chem Chem Phys ; 17(24): 15868-75, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26016854

RESUMO

Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 µm, which is smaller than the ∼2.8 µm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

10.
Phys Chem Chem Phys ; 17(19): 12786-95, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25907247

RESUMO

A solid-state environmentally friendly Ag2S quantum dot-sensitized solar cell (QDSSC) is demonstrated. The photovoltaic device is fabricated by applying ZnO@Ag2S core-shell nanowire arrays (NWAs) as light absorbers and electron conductors, and poly-3-hexylthiophene (P3HT) as a solid-state hole conductor. Ag2S quantum dots (QDs) were directly grown on the ZnO nanowires by the successive ionic layer adsorption and reaction (SILAR) method to obtain the core-shell nanostructure. The number of SILAR cycles for QD formation and the length of the core-shell NWs significantly affect the photocurrent. The device with a core-shell NWAs photoanode shows a power conversion efficiency increase by 32% compared with the device based on a typical nanoparticle-based photoanode with Ag2S QDs. The enhanced performance is attributed to enhanced collection of the photogenerated electrons utilizing the ZnO nanowire as an efficient pathway for transporting the photogenerated electrons from the QD to the contact.

11.
Chimia (Aarau) ; 69(1-2): 41-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26507087

RESUMO

Solid-state dye-sensitized solar cells (sDSCs) in which a solid organic charge-transfer medium, or hole conductor (HC), is interposed between a dye-coated mesoporous oxide electrode and a conductive counter electrode, have attracted considerable interest as viable alternatives to the more ubiquitous mediator-electrolyte DSC. Of particular importance to efficient operation are, in addition to the useful processes contributing to current generation (light harvesting, electron injection and current collection), the recombinative deleterious processes. The organic HCs are highly reactive toward electrons in the oxide or the conducting glass support, therefore necessitating the inclusion of a carefully prepared thin blocking oxide underlayer support as well as the molecular design of special dark current-suppressing dyes. Initially (mid-1990s) sDSCs with organic small molecular weight hole conductors have undergone systematic investigation. At the same time the first tests of sDSCs with conducting polymer hole conductors were published, with subsequent emphasis on the in situ generation of the HC inside the pores. For both types of devices a light-to-electricity conversion efficiency, in the 5-10% range for several dye-HC combinations, approaches that of the most efficient DSCs with non-volatile liquid electrolytes, thereby encouraging further efforts for obtaining stable, efficient and inexpensive sDSCs.

12.
Chimia (Aarau) ; 69(1): 41-51, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-28982463

RESUMO

Solid-state dye-sensitized solar cells (sDSCs) in which a solid organic charge-transfer medium, or hole conductor (HC), is interposed between a dye-coated mesoporous oxide electrode and a conductive counter electrode, have attracted considerable interest as viable alternatives to the more ubiquitous mediator-electrolyte DSC. Of particular importance to efficient operation are, in addition to the useful processes contributing to current generation (light harvesting, electron injection and current collection), the recombinative deleterious processes. The organic HCs are highly reactive toward electrons in the oxide or the conducting glass support, therefore necessitating the inclusion of a carefully prepared thin blocking oxide underlayer support as well as the molecular design of special dark current-suppressing dyes. Initially (mid-1990s) sDSCs with organic small molecular weight hole conductors have undergone systematic investigation. At the same time the first tests of sDSCs with conducting polymer hole conductors were published, with subsequent emphasis on the in situ generation of the HC inside the pores. For both types of devices a light-to-electricity conversion efficiency, in the 5-10% range for several dye-HC combinations, approaches that of the most efficient DSCs with non-volatile liquid electrolytes, thereby encouraging further efforts for obtaining stable, efficient and inexpensive sDSCs.

13.
Chemphyschem ; 15(6): 1043-7, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24596255

RESUMO

Poly(3,4-ethylenedioxypyrrole) (PEDOP), combined with metal-free organic sensitizers, is efficiently used for the first time as the hole-transporting material in solid-state dye-sensitized solar cells. Devices employing PEDOP as the hole conductor and D35 or D21 L6 as the sensitizer show a ten-times-higher energy-conversion efficiency (of 4.5% and 3.3%, respectively) compared to Ru-Z907-based devices. This is due to the efficient suppression of electron recombination.

14.
Phys Chem Chem Phys ; 15(40): 17419-25, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24022525

RESUMO

Recently, cobalt redox electrolyte mediators have emerged as a promising alternative to the commonly used iodide/triiodide redox shuttle in dye-sensitized solar cells (DSCs). Here, we report the successful use of a new quasi-liquid, polymer-based electrolyte containing the Co(3+)/Co(2+) redox mediator in 3-methoxy propionitrile solvent in order to overcome the limitations of high cell resistance, low diffusion coefficient and rapid recombination losses. The performance of the solar cells containing the polymer based electrolytes increased by a factor of 1.2 with respect to an analogous electrolyte without the polymer. The performances of the fabricated DSCs have been investigated in detail by photovoltaic, transient electron measurements, EIS, Raman and UV-vis spectroscopy. This approach offers an effective way to make high-performance and long-lasting DSCs.

15.
RSC Adv ; 11(62): 39570-39581, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492491

RESUMO

The present review presents the application of electronically conducting polymers (conducting polymers) as hole conductors in solid-state dye solar cells (S-DSSCs). At first, the basic principles of dye solar cell operation are presented. The next section deals with the principles of electrochemical polymerisation and its photoelectrochemical variety, the latter being an important, frequently-used technique for generating conducting polymers and hole conductors in DSSCs. Finally, two varieties of S-DSSC configurations, those of dry S-DSSC and of S-DSSCs incorporating a liquid electrolyte, are discussed.

16.
Nat Commun ; 12(1): 1777, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741953

RESUMO

To develop photosensitizers with high open-circuit photovoltage (Voc) is a crucial strategy to enhance the power conversion efficiency (PCE) of co-sensitized solar cells. Here, we show a judiciously tailored organic photosensitizer, coded MS5, featuring the bulky donor N-(2',4'-bis(dodecyloxy)-[1,1'-biphenyl]-4-yl)-2',4'-bis(dodecyloxy)-N-phenyl-[1,1'-biphenyl]-4-amine and the electron acceptor 4-(benzo[c][1,2,5]thiadiazol-4-yl)benzoic acid. Employing MS5 with a copper (II/I) electrolyte enables a dye-sensitized solar cell (DSC) to achieve a strikingly high Voc of 1.24 V, with the Voc deficit as low as 130 mV and an ideality factor of merely 1.08. The co-sensitization of MS5 with the wider spectral-response dye XY1b produces a highly efficient and stable DSC with the PCE of 13.5% under standard AM1.5 G, 100 mW cm-2 solar radiation. Remarkably, the co-sensitized solar cell (active area of 2.8 cm2) presents a record PCE of 34.5% under ambient light, rendering it very attractive as an ambient light harvesting energy source for low power electronics.

17.
ChemSusChem ; 12(19): 4337-4352, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31478349

RESUMO

Artificial photosynthesis promises to become a sustainable way to harvest solar energy and store it in chemical fuels by means of photoelectrochemical (PEC) cells. Although it is intriguing to shift the fossil-fuel-based economy to a renewable carbon-neutral one, which will alleviate environmental problems, there is still a long way to go before it rivals traditional energy sources. Existing solar water-splitting devices can be sorted into three categories: photovoltaic-powered electrolysis, PEC water splitting, and photocatalysis (PC). PEC and PC systems hold the potential to further reduce the cost of devices due to their simple structures in which photoabsorbers and catalysts are closely integrated. PC is expected to be the least expensive approach; however, additional costs and concerns are brought about by the subsequent explosive gas separation. At the heart of all devices, semiconductor photoabsorbers should be efficient, robust, and cheap to satisfy the strict requirements on the market. Therefore, this Review intends to give readers an overview on PEC water splitting, with an emphasis on oxide material-based devices, which hold the potential to support global-scale production in the future.

18.
ACS Nano ; 10(7): 6816-25, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27304078

RESUMO

The hole transporting material (HTM) is an essential component in perovskite solar cells (PSCs) for efficient extraction and collection of the photoinduced charges. Triphenylamine- and carbazole-based derivatives have extensively been explored as alternative and economical HTMs for PSCs. However, the improvement of their power conversion efficiency (PCE), as well as further investigation of the relationship between the chemical structure of the HTMs and the photovoltaic performance, is imperatively needed. In this respect, a simple carbazole-based HTM X25 was designed on the basis of a reference HTM, triphenylamine-based X2, by simply linking two neighboring phenyl groups in a triphenylamine unit through a carbon-carbon single bond. It was found that a lowered highest occupied molecular orbital (HOMO) energy level was obtained for X25 compared to that of X2. Besides, the carbazole moiety in X25 improved the molecular planarity as well as conductivity property in comparison with the triphenylamine unit in X2. Utilizing the HTM X25 in a solar cell with mixed-ion perovskite [HC(NH2)2]0.85(CH3NH3)0.15Pb(I0.85Br0.15)3, a highest reported PCE of 17.4% at 1 sun (18.9% under 0.46 sun) for carbazole-based HTM in PSCs was achieved, in comparison of a PCE of 14.7% for triphenylamine-based HTM X2. From the steady-state photoluminescence and transient photocurrent/photovoltage measurements, we conclude that (1) the lowered HOMO level for X25 compared to X2 favored a higher open-circuit voltage (Voc) in PSCs; (2) a more uniform formation of X25 capping layer than X2 on the surface of perovskite resulted in more efficient hole transport and charge extraction in the devices. In addition, the long-term stability of PSCs with X25 is significantly enhanced compared to X2 due to its good uniformity of HTM layer and thus complete coverage on the perovskite. The results provide important information to further develop simple and efficient small molecular HTMs applied in solar cells.

19.
Adv Mater ; 26(38): 6629-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25124337

RESUMO

Two carbazole-based small molecule hole-transport materials (HTMs) are synthesized and investigated in solid-state dye-sensitized solar cells (ssDSCs) and perovskite solar cells (PSCs). The HTM X51-based devices exhibit high power conversion efficiencies (PCEs) of 6.0% and 9.8% in ssDSCs and PSCs, respectively. These results are superior or comparable to those of 5.5% and 10.2%, respectively, obtained for the analogous cells using the state-of-the-art HTM Spiro-OMeTAD.

20.
Dalton Trans ; 40(40): 10289-303, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21946839

RESUMO

The present review offers a survey of liquid electrolytes used in dye-sensitized solar cells from the beginning of photoelectrochemical cell research. It handles both the solvents employed, and the prerequisites identified for an ideal liquid solvent, as well as the various effects of electrolyte solutes in terms of redox systems and additives. The conclusions of the present review call for more detailed molecular insight into the electrolyte-electrode interface reactions and structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA