Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Soft Matter ; 20(10): 2258-2271, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38353299

RESUMO

We conduct a systematic exploration of the energy landscape of vesicle morphologies within the framework of the Helfrich model. Vesicle shapes are determined by minimizing the elastic energy subject to constraints of constant area and volume. The results show that pressurized vesicles can adopt higher-energy spindle-like configurations that require the action of point forces at the poles. If the internal pressure is lower than the external one, multilobed shapes are predicted. We utilize our results to rationalize experimentally observed spindle shapes of giant vesicles in a uniform AC electric field.

2.
Eur Phys J E Soft Matter ; 47(2): 12, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355850

RESUMO

We consider the dynamic structure factor (DSF) of quasi-spherical vesicles and present a generalization of an expression that was originally formulated by Zilman and Granek (ZG) for scattering from isotropically oriented quasi-flat membrane plaquettes. The expression is obtained in the form of a multi-dimensional integral over the undulating membrane surface. The new expression reduces to the original stretched exponential form in the limit of sufficiently large vesicles, i.e., in the micron range or larger. For much smaller unilamellar vesicles, deviations from the asymptotic, stretched exponential equation are noticeable even if one assumes that the Seifert-Langer leaflet density mode is completely relaxed and membrane viscosity is neglected. To avoid the need for an exhaustive numerical integration while fitting to neutron spin echo (NSE) data, we provide a useful approximation for polydisperse systems that tests well against the numerical integration of the complete expression. To validate the new expression, we performed NSE experiments on variable-size vesicles made of a POPC/POPS lipid mixture and demonstrate an advantage over the original stretched exponential form or other manipulations of the original ZG expression that have been deployed over the years to fit the NSE data. In particular, values of the membrane bending rigidity extracted from the NSE data using the new approximations were insensitive to the vesicle radii and scattering wavenumber and compared very well with expected values of the effective bending modulus ([Formula: see text]) calculated from results in the literature. Moreover, the generalized scattering theory presented here for an undulating quasi-spherical shell can be easily extended to other models for the membrane undulation dynamics beyond the Helfrich Hamiltonian and thereby provides the foundation for the study of the nanoscale dynamics in more complex and biologically relevant model membrane systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA