Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Energy Fuels ; 36(21): 13084-13093, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366752

RESUMO

Biofuels are required to reach the target set out by the European Commission's Transport mandate in the RED II (Renewable Energy Directive) for 2020-2030. To avoid indirect land use change, waste biomass resources such as sunflower husks can be used for advanced biofuel production. A process simulation and technoeconomic assessment of three fast pyrolysis plant scenarios were conducted. The nature of the waste feedstock has an effect on the value chain configuration, fast pyrolysis, and upgrading process design. Considering the difficulties with the transport and storage of biogenic waste due to low bulk density or hazardous and pathogenic content in case of transporting untreated sunflower husks, it is recommended to use a hub-and-spoke type of decentralized value chain configuration. The fast pyrolysis plants are located close to the feedstock, and the fast pyrolysis bio-oil (FPBO) is transported to a single upgrading facility, colocated at an existing refinery. The upgraded FPBO is then cofed into an FCC (fluidized catalyst cracker), where partially green biofuels such as gasoline and diesel are produced. For the fast pyrolysis process design, Scenario 2, treating 10 t/h of dry biomass with electricity and steam as coproducts, has the most favorable economic results with a total capital investment (TCI) of 78 million Euro and operating expenses (OPEX) of 6 million Euro.

2.
Ind Eng Chem Res ; 61(30): 11071-11079, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35941850

RESUMO

Currently, propanol production highly depends on conventional fossil resources. Therefore, an alternative production process, denoted as "C123", is proposed and evaluated in which underutilized and methane-rich feedstocks such as biogas (scenario BG), marginal gas (scenario MG), and associated gas (scenario AG) are converted into propanol. A first modular-scale process concept was constructed in Aspen Plus, based on experimental data and know-how of the C123 consortium partners. The environmental performance of the considered scenarios was compared at the life cycle level by calculating key performance indicators (KPIs), such as the global warming burden. The results showed that scenario BG is the least dependent on fossil fuels for energy use. Scenario AG seems the most promising one based on almost all selected KPIs when taking into account the avoided gas flaring emissions. The performance of the C123 process concept could be improved by applying heat integration in the process concept.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA