Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 148(5): 958-72, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22385961

RESUMO

Like many asymmetrically dividing cells, budding yeast segregates mitotic spindle poles nonrandomly between mother and daughter cells. During metaphase, the spindle positioning protein Kar9 accumulates asymmetrically, localizing specifically to astral microtubules emanating from the old spindle pole body (SPB) and driving its segregation to the bud. Here, we show that the SPB component Nud1/centriolin acts through the mitotic exit network (MEN) to specify asymmetric SPB inheritance. In the absence of MEN signaling, Kar9 asymmetry is unstable and its preference for the old SPB is disrupted. Consistent with this, phosphorylation of Kar9 by the MEN kinases Dbf2 and Dbf20 is not required to break Kar9 symmetry but is instead required to maintain stable association of Kar9 with the old SPB throughout metaphase. We propose that MEN signaling links Kar9 regulation to SPB identity through biasing and stabilizing the age-insensitive, cyclin-B-dependent mechanism of symmetry breaking.


Assuntos
Saccharomyces cerevisiae/citologia , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Desoxirribonucleases/metabolismo , Metáfase , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , tRNA Metiltransferases/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(39): 15716-21, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24019491

RESUMO

Cyclin-dependent kinases (Cdks) are regulatory enzymes with temporal and spatial selectivity for their protein substrates that are governed by cell cycle-regulated cyclin subunits. Specific cyclin-Cdk complexes bind to and phosphorylate target proteins, coupling their activity to cell cycle states. The identification of specific cyclin-Cdk substrates is challenging and so far, has largely been achieved through indirect correlation or use of in vitro techniques. Here, we use a protein-fragment complementation assay based on the optimized yeast cytosine deaminase to systematically identify candidate substrates of budding yeast Saccharomyces cerevisiae Cdk1 and show dependency on one or more regulatory cyclins. We identified known and candidate cyclin dependencies for many predicted protein kinase Cdk1 targets and showed elusory Clb3-Cdk1-specific phosphorylation of γ-tubulin, thus establishing the timing of this event in controlling assembly of the mitotic spindle. Our strategy can be generally applied to identify substrates and accessory subunits of multisubunit protein complexes.


Assuntos
Ciclinas/metabolismo , DNA Polimerase III/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Biológicos , Ligação Proteica , Especificidade por Substrato , Tubulina (Proteína)/metabolismo
3.
PLoS Comput Biol ; 10(5): e1003654, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24874694

RESUMO

Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and visualization of the hidden dynamics within protein interaction networks.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Modelos Químicos , Mapeamento de Interação de Proteínas/métodos , Saccharomycetales/metabolismo , Transdução de Sinais/fisiologia , Sítios de Ligação , Simulação por Computador , Ligação Proteica
4.
iScience ; 26(7): 107180, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534187

RESUMO

Mitochondria are multifaceted organelles crucial for cellular homeostasis that contain their own genome. Mitochondrial DNA (mtDNA) replication is a spatially regulated process essential for the maintenance of mitochondrial function, its defect causing mitochondrial diseases. mtDNA replication occurs at endoplasmic reticulum (ER)-mitochondria contact sites and is affected by mitochondrial dynamics: The absence of mitochondrial fusion is associated with mtDNA depletion whereas loss of mitochondrial fission causes the aggregation of mtDNA within abnormal structures termed mitobulbs. Here, we show that contact sites between mitochondria and ER sheets, the ER structure associated with protein synthesis, regulate mtDNA replication and distribution within mitochondrial networks. DRP1 loss or mutation leads to modified ER sheets and alters the interaction between ER sheets and mitochondria, disrupting RRBP1-SYNJ2BP interaction. Importantly, mtDNA distribution and replication were rescued by promoting ER sheets-mitochondria contact sites. Our work identifies the role of ER sheet-mitochondria contact sites in regulating mtDNA replication and distribution.

5.
J Virol ; 84(9): 4798-809, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20164229

RESUMO

Protein phosphatase 2A (PP2A) has been implicated in cell cycle progression and mitosis; however, the complexity of PP2A regulation via multiple B subunits makes its functional characterization a significant challenge. The human adenovirus protein E4orf4 has been found to induce both high Cdk1 activity and the accumulation of cells in G(2)/M in both mammalian and yeast cells, effects which are largely dependent on the B55/Cdc55 regulatory subunit of PP2A. Thus, E4orf4 represents a unique means by which the function of a specific form of PP2A can be delineated in vivo. In Saccharomyces cerevisiae, only two PP2A regulatory subunits exist, Cdc55 and Rts1. Here, we show that E4orf4-induced toxicity depends on a functional interaction with Cdc55. E4orf4 expression correlates with the inappropriate reduction of Pds1 and Scc1 in S-phase-arrested cells. The unscheduled loss of these proteins suggests the involvement of PP2A(Cdc55) in the regulation of the Cdc20 form of the anaphase-promoting complex (APC). Contrastingly, activity of the Hct1 form of the APC is not induced by E4orf4, as demonstrated by the observed stability of its substrates. We propose that E4orf4, being a Cdc55-specific inhibitor of PP2A, demonstrates the role of PP2A(Cdc55) in regulating APC(Cdc20) activity.


Assuntos
Adenovírus Humanos/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas Virais/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Proteínas Cdc20 , Proteínas Cromossômicas não Histona/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Securina , Proteínas Virais/genética
6.
Sci Rep ; 11(1): 4227, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608583

RESUMO

Spindle positioning must be tightly regulated to ensure asymmetric cell divisions are successful. In budding yeast, spindle positioning is mediated by the asymmetric localization of microtubule + end tracking protein Kar9. Kar9 asymmetry is believed to be essential for spindle alignment. However, the temporal correlation between symmetry breaking and spindle alignment has not been measured. Here, we establish a method of quantifying Kar9 symmetry breaking and find that Kar9 asymmetry is not well coupled with stable spindle alignment. We report the spindles are not aligned in the majority of asymmetric cells. Rather, stable alignment is correlated with Kar9 residence in the bud, regardless of symmetry state. Our findings suggest that Kar9 asymmetry alone is insufficient for stable alignment and reveal a possible role for Swe1 in regulating Kar9 residence in the bud.


Assuntos
Divisão Celular/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Divisão Celular Assimétrica , Proteínas de Ciclo Celular/metabolismo , Mutação , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Tirosina Quinases/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
7.
Lab Chip ; 10(18): 2449-57, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20714499

RESUMO

High resolution live cell microscopy is increasingly used to detect cellular dynamics in response to drugs and chemicals, but it depends on complex and expensive liquid handling devices that have limited its wider adoption. Here, we present a microfluidic perfusion system that is built without using specialized microfabrication infrastructure, simple to use because only a pipette is needed for liquid handling, and yet allows for rapid media exchange and simultaneous fluorescence microscopy imaging. Yeast cells may be introduced from a culture, or spotted as arrays on a coverslip, and are sandwiched with a 20 mum thick track-etched membrane. A second coverslip and a mesh with 120 mum porosity are placed on top, forming a microfluidic conduit for lateral flow of solutions by capillary effects. Solutions introduced through the inlet flow through the mesh and chemicals diffuse vertically across the membrane to the cells trapped below. Solutions are exchanged by adding a new sample to the inlet. Using this system, we studied the dynamic response of F-actin in living yeast expressing Sac6-EGFP-a protein associated with discrete F-actin structures called "patches"-to the drug latrunculin A, a well known inhibitor of actin polymerization. We observed that the patches disappeared in 85% of the cells within 5 min, and re-assembled in 45 min following exchange of the drug with media. The perfusion system presented here is a simple, inexpensive device suited for analysis of drug dose-response and regeneration of single cells and arrays of cells.


Assuntos
Técnicas de Cultura de Células/instrumentação , Meios de Cultura , Análise em Microsséries/instrumentação , Técnicas Analíticas Microfluídicas , Imagem Molecular/instrumentação , Perfusão/instrumentação , Saccharomycetales/citologia , Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Desenho de Equipamento , Microscopia de Fluorescência , Microtecnologia , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/metabolismo , Tiazolidinas/farmacologia , Fatores de Tempo
8.
Mol Biol Cell ; 18(8): 2805-16, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17507656

RESUMO

The kinetochore, a protein complex that links chromosomes to microtubules (MTs), is required to prevent spindle expansion during S phase in budding yeast, but the mechanism of how the kinetochore maintains integrity of the bipolar spindle before mitosis is not well understood. Here, we demonstrate that a mutation of Spc24, a component of the conserved Ndc80 kinetochore complex, causes lethality when cells are exposed to the DNA replication inhibitor hydroxyurea (HU) due to premature spindle expansion and segregation of incompletely replicated DNA. Overexpression of Stu1, a CLASP-related MT-associated protein or a truncated form of the XMAP215 orthologue Stu2 rescues spc24-9 HU lethality and prevents spindle expansion. Truncated Stu2 likely acts in a dominant-negative manner, because overexpression of full-length STU2 does not rescue spc24-9 HU lethality, and spindle expansion in spc24-9 HU-treated cells requires active Stu2. Stu1 and Stu2 localize to the kinetochore early in the cell cycle and Stu2 kinetochore localization depends on Spc24. We propose that mislocalization of Stu2 results in premature spindle expansion in S phase stalled spc24-9 mutants. Identifying factors that restrain spindle expansion upon inhibition of DNA replication is likely applicable to the mechanism by which spindle elongation is regulated during a normal cell cycle.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Anáfase/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Genes Fúngicos , Hidroxiureia/farmacologia , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Proteínas Nucleares/metabolismo , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Fuso Acromático/efeitos dos fármacos
9.
Mol Biol Cell ; 17(10): 4420-34, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16899509

RESUMO

Microtubule plus-end-interacting proteins (+TIPs) promote the dynamic interactions between the plus ends (+ends) of astral microtubules and cortical actin that are required for preanaphase spindle positioning. Paradoxically, +TIPs such as the EB1 orthologue Bim1 and Kar9 also associate with spindle pole bodies (SPBs), the centrosome equivalent in budding yeast. Here, we show that deletion of four C-terminal residues of the budding yeast gamma-tubulin Tub4 (tub4-delta dsyl) perturbs Bim1 and Kar9 localization to SPBs and Kar9-dependent spindle positioning. Surprisingly, we find Kar9 localizes to microtubule +ends in tub4-delta dsyl cells, but these microtubules fail to position the spindle when targeted to the bud. Using cofluorescence and coaffinity purification, we show Kar9 complexes in tub4-delta dsyl cells contain reduced levels of Bim1. Astral microtubule dynamics is suppressed in tub4-delta dsyl cells, but it are restored by deletion of Kar9. Moreover, Myo2- and F-actin-dependent dwelling of Kar9 in the bud is observed in tub4-delta dsyl cells, suggesting defective Kar9 complexes tether microtubule +ends to the cortex. Overproduction of Bim1, but not Kar9, restores Kar9-dependent spindle positioning in the tub4-delta dsyl mutant, reduces cortical dwelling, and promotes Bim1-Kar9 interactions. We propose that SPBs, via the tail of Tub4, promote the assembly of functional +TIP complexes before their deployment to microtubule +ends.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/fisiologia , Actinas , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Proteínas dos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomycetales/metabolismo , Transdução de Sinais , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Tubulina (Proteína)/genética
10.
Protein Sci ; 28(6): 1095-1105, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30968464

RESUMO

Intramolecular electrostatic attraction and repulsion strongly influence the conformational sampling of intrinsically disordered proteins and domains (IDPs). In order to better understand this complex relationship, we have used nuclear magnetic resonance to measure side chain pKa values and pH-dependent translational diffusion coefficients for the unstructured and highly acidic carboxyl-terminus of γ-tubulin (γ-CT), providing insight into how the net charge of an IDP relates to overall expansion or collapse of the conformational ensemble. Many of the pKa values in the γ-CT are shifted upward by 0.3-0.4 units and exhibit negatively cooperative ionization pH profiles, likely due to the large net negative charge that accumulates on the molecule as the pH is raised. pKa shifts of this magnitude correspond to electrostatic interaction energies between the affected residues and the rest of the charged molecule that are each on the order of 1 kcal mol-1 . Diffusion of the γ-CT slowed with increasing net charge, indicative of an expanding hydrodynamic radius (rH ). The degree of expansion agreed quantitatively with what has been seen from comparisons of IDPs with different charge content, yielding the general trend that every 0.1 increase in relative charge (|Q|/res) produces a roughly 5% increase in rH . While γ-CT pH titration data followed this trend nearly perfectly, there were substantially larger deviations for the database of different IDP sequences. This suggests that other aspects of an IDP's primary amino acid sequence beyond net charge influence the sensitivity of rH to electrostatic interactions.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Tubulina (Proteína)/química , Difusão , Concentração de Íons de Hidrogênio , Ressonância Magnética Nuclear Biomolecular , Eletricidade Estática
11.
Cell Rep ; 26(11): 2875-2889.e3, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30865880

RESUMO

The segregation of chromosomes is a critical step during cell division. This process is driven by the elongation of spindle microtubules and is tightly regulated by checkpoint mechanisms. It is unknown whether microtubules affect checkpoint responses as passive contributors or active regulators of the process. We show here that interphase microtubules are essential to temporally restrict the effects of DNA replication stress to S phase in Saccharomyces cerevisiae. Tubulin mutants hypersensitive to DNA damage experience a strong but delayed mitotic checkpoint arrest after exposure to genotoxic stress in S phase. This untimely arrest is dependent on the Aurora B kinase but, surprisingly, not on the DNA damage checkpoint. Impaired microtubule-kinetochore interaction is the apparent cause for this unusual phenotype. Collectively, our results reveal that core components of microtubules potentiate the detection of DNA lesions created in S phase, thereby suppressing untimely activation of mitotic checkpoints after DNA replication stress.


Assuntos
Aurora Quinase B/genética , Replicação do DNA , Interfase , Microtúbulos/metabolismo , Mitose , Aurora Quinase B/metabolismo , Dano ao DNA , Cinetocoros/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Curr Biol ; 29(22): 3825-3837.e3, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31679937

RESUMO

Separation of duplicated spindle poles is the first step in forming the mitotic spindle. Kinesin-5 crosslinks and slides anti-parallel microtubules (MTs), but it is unclear how these two activities contribute to the first steps in spindle formation. In this study, we report that in monopolar spindles, the duplicated spindle poles snap apart in a fast and irreversible step that produces a nascent bipolar spindle. Using mutations in Kinesin-5 that inhibit microtubule sliding, we show that the fast, irreversible pole separation is primarily driven by microtubule crosslinking. Electron tomography revealed microtubule pairs in monopolar spindles have short overlaps that intersect at high angles and are unsuited for ensemble Kinesin-5 sliding. However, maximal extension of a subset of anti-parallel microtubule pairs approaches the length of nascent bipolar spindles and is consistent with a Kinesin-5 crosslinking-driven transition. Nonetheless, microtubule sliding by Kinesin-5 contributes to stabilizing the nascent spindle and setting its stereotyped equilibrium length.


Assuntos
Cinesinas/genética , Cinesinas/metabolismo , Fuso Acromático/fisiologia , Ciclo Celular/genética , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Mitose/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Polos do Fuso/genética , Polos do Fuso/fisiologia
13.
BMC Genomics ; 9: 336, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18627629

RESUMO

BACKGROUND: Protein kinases and phosphatases regulate protein phosphorylation, a critical means of modulating protein function, stability and localization. The identification of functional networks for protein phosphatases has been slow due to their redundant nature and the lack of large-scale analyses. We hypothesized that a genome-scale analysis of genetic interactions using the Synthetic Genetic Array could reveal protein phosphatase functional networks. We apply this approach to the conserved type 1 protein phosphatase Glc7, which regulates numerous cellular processes in budding yeast. RESULTS: We created a novel glc7 catalytic mutant (glc7-E101Q). Phenotypic analysis indicates that this novel allele exhibits slow growth and defects in glucose metabolism but normal cell cycle progression and chromosome segregation. This suggests that glc7-E101Q is a hypomorphic glc7 mutant. Synthetic Genetic Array analysis of glc7-E101Q revealed a broad network of 245 synthetic sick/lethal interactions reflecting that many processes are required when Glc7 function is compromised such as histone modification, chromosome segregation and cytokinesis, nutrient sensing and DNA damage. In addition, mitochondrial activity and inheritance and lipid metabolism were identified as new processes involved in buffering Glc7 function. An interaction network among 95 genes genetically interacting with GLC7 was constructed by integration of genetic and physical interaction data. The obtained network has a modular architecture, and the interconnection among the modules reflects the cooperation of the processes buffering Glc7 function. CONCLUSION: We found 245 genes required for the normal growth of the glc7-E101Q mutant. Functional grouping of these genes and analysis of their physical and genetic interaction patterns bring new information on Glc7-regulated processes.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Genes Fúngicos , Proteína Fosfatase 1/fisiologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
14.
Mol Biol Cell ; 29(1): 10-28, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142076

RESUMO

In many asymmetrically dividing cells, the microtubule-organizing centers (MTOCs; mammalian centrosome and yeast spindle pole body [SPB]) nucleate more astral microtubules on one of the two spindle poles than the other. This differential activity generally correlates with the age of MTOCs and contributes to orienting the mitotic spindle within the cell. The asymmetry might result from the two MTOCs being in distinctive maturation states. We investigated this model in budding yeast. Using fluorophores with different maturation kinetics to label the outer plaque components of the SPB, we found that the Cnm67 protein is mobile, whereas Spc72 is not. However, these two proteins were rapidly as abundant on both SPBs, indicating that SPBs mature more rapidly than anticipated. Superresolution microscopy confirmed this finding for Spc72 and for the γ-tubulin complex. Moreover, astral microtubule number and length correlated with the subcellular localization of SPBs rather than their age. Kar9-dependent orientation of the spindle drove the differential activity of the SPBs in astral microtubule organization rather than intrinsic differences between the spindle poles. Together, our data establish that Kar9 and spatial cues, rather than the kinetics of SPB maturation, control the asymmetry of astral microtubule organization between the preexisting and new SPBs.


Assuntos
Microtúbulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Polos do Fuso/metabolismo , Cinética , Metáfase , Mitose , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Protein Sci ; 27(2): 531-545, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29127738

RESUMO

Tubulins are an ancient family of eukaryotic proteins characterized by an amino-terminal globular domain and disordered carboxyl terminus. These carboxyl termini play important roles in modulating the behavior of microtubules in living cells. However, the atomic-level basis of their function is not well understood. These regions contain multiple acidic residues and their overall charges are modulated in vivo by post-translational modifications, for example, phosphorylation. In this study, we describe an application of NMR and computer Monte Carlo simulations to investigate how the modification of local charge alters the conformational sampling of the γ-tubulin carboxyl terminus. We compared the dynamics of two 39-residue polypeptides corresponding to the carboxyl-terminus of yeast γ-tubulin. One polypeptide comprised the wild-type amino acid sequence while the second contained a Y > D mutation at Y11 in the polypeptide (Y445 in the full protein). This mutation introduces additional negative charge at a site that is phosphorylated in vivo and produces a phenotype with perturbed microtubule function. NMR relaxation measurements show that the Y11D mutation produces dramatic changes in the millisecond-timescale motions of the entire polypeptide. This observation is supported by Monte Carlo simulations that-similar to NMR-predict the WT γ-CT is largely unstructured and that the substitution of Tyr 11 with Asp causes the sampling of extended conformations that are unique to the Y11D polypeptide.


Assuntos
Substituição de Aminoácidos , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tirosina/genética , Sequência de Aminoácidos , Sequência Conservada , Hidrodinâmica , Modelos Moleculares , Método de Monte Carlo , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/genética , Fenótipo , Fosforilação , Domínios Proteicos , Estrutura Secundária de Proteína , Tempo
16.
Sci Rep ; 8(1): 2513, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391486

RESUMO

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

17.
Sci Rep ; 7(1): 11398, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900268

RESUMO

γ-Tubulin has a well-established role in nucleating the assembly of microtubules, yet how phosphorylation regulates its activity remains unclear. Here, we use a time-resolved, fitness-based SGA approach to compare two γ-tubulin alleles, and find that the genetic interaction profile of γtub-Y362E is enriched in spindle positioning and cell polarity genes relative to that of γtub-Y445D, which is enriched in genes involved in spindle assembly and stability. In γtub-Y362E cells, we find a defect in spindle alignment and an increase in the number of astral microtubules at both spindle poles. Our results suggest that the γtub-Y362E allele is a separation-of-function mutation that reveals a role for γ-tubulin phospho-regulation in spindle alignment. We propose that phosphorylation of the evolutionarily conserved Y362 residue of budding yeast γ-tubulin contributes to regulating the number of astral microtubules associated with spindle poles, and promoting efficient pre-anaphase spindle alignment.


Assuntos
Microtúbulos/metabolismo , Corpos Polares do Fuso/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Alelos , Linhagem Celular , Polaridade Celular , Dineínas/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Transdução de Sinais
18.
Methods Mol Biol ; 1342: 237-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26254928

RESUMO

Cdk1 is the essential cyclin-dependent kinase in the budding yeast Saccharomyces cerevisiae. Cdk1 orchestrates cell cycle control by phosphorylating target proteins with extraordinary temporal and spatial specificity by complexing with one of the nine cyclin regulatory subunits. The identification of the cyclin required for targeting Cdk1 to a substrate can help to place the regulation of that protein at a specific time point during the cell cycle and reveal information needed to elucidate the biological significance of the regulation. Here, we describe a combination of strategies to identify interaction partners of Cdk1, and associate these complexes to the appropriate cyclins using a cell-based protein-fragment complementation assay. Validation of the specific reliance of the OyCD interaction between Cdk1 and budding yeast γ-tubulin on the Clb3 cyclin, relative to the mitotic Clb2 cyclin, was performed by an in vitro kinase assay using the γ-tubulin complex as a substrate.


Assuntos
Proteína Quinase CDC2/metabolismo , Citosina Desaminase/metabolismo , Ensaios Enzimáticos/métodos , Saccharomyces cerevisiae/enzimologia , Tubulina (Proteína)/metabolismo , Animais , Proteína Quinase CDC2/isolamento & purificação , Deleção de Genes , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9 , Spodoptera
19.
Nat Commun ; 7: 13766, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941811

RESUMO

Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.


Assuntos
Amiloide/metabolismo , Bactérias/crescimento & desenvolvimento , Corpos Polares do Fuso/metabolismo , Algoritmos , Funções Verossimilhança , Distribuição Normal , Fatores de Tempo
20.
Mol Biol Cell ; 24(20): 3238-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23966467

RESUMO

During spindle assembly, microtubules may attach to kinetochores or pair to form antiparallel pairs or interpolar microtubules, which span the two spindle poles and contribute to mitotic pole separation and chromosome segregation. Events in the specification of the interpolar microtubules are poorly understood. Using three-dimensional electron tomography and analysis of spindle dynamical behavior in living cells, we investigated the process of spindle assembly. Unexpectedly, we found that the phosphorylation state of an evolutionarily conserved Cdk1 site (S360) in γ-tubulin is correlated with the number and organization of interpolar microtubules. Mimicking S360 phosphorylation (S360D) results in bipolar spindles with a normal number of microtubules but lacking interpolar microtubules. Inhibiting S360 phosphorylation (S360A) results in spindles with interpolar microtubules and high-angle, antiparallel microtubule pairs. The latter are also detected in wild-type spindles <1 µm in length, suggesting that high-angle microtubule pairing represents an intermediate step in interpolar microtubule formation. Correlation of spindle architecture with dynamical behavior suggests that microtubule pairing is sufficient to separate the spindle poles, whereas interpolar microtubules maintain the velocity of pole displacement during early spindle assembly. Our findings suggest that the number of interpolar microtubules formed during spindle assembly is controlled in part through activities at the spindle poles.


Assuntos
Proteína Quinase CDC2/metabolismo , Cinetocoros/metabolismo , Microtúbulos/genética , Fuso Acromático/genética , Relação Estrutura-Atividade , Substituição de Aminoácidos/genética , Proteína Quinase CDC2/química , Proteína Quinase CDC2/genética , Tomografia com Microscopia Eletrônica , Cinetocoros/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Fosforilação , Saccharomyces cerevisiae , Fuso Acromático/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA