Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 24(10): 620-639, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37620599

RESUMO

Neurodegenerative diseases are the most common cause of dementia. Although their underlying molecular pathologies have been identified, there is substantial heterogeneity in the patterns of progressive brain alterations across and within these diseases. Recent advances in neuroimaging methods have revealed that pathological proteins accumulate along specific macroscale brain networks, implicating the network architecture of the brain in the system-level pathophysiology of neurodegenerative diseases. However, the extent to which 'network-based neurodegeneration' applies across the wide range of neurodegenerative disorders remains unclear. Here, we discuss the state-of-the-art of neuroimaging-based connectomics for the mapping and prediction of neurodegenerative processes. We review findings supporting brain networks as passive conduits through which pathological proteins spread. As an alternative view, we also discuss complementary work suggesting that network alterations actively modulate the spreading of pathological proteins between connected brain regions. We conclude this Perspective by proposing an integrative framework in which connectome-based models can be advanced along three dimensions of innovation: incorporating parameters that modulate propagation behaviour on the basis of measurable biological features; building patient-tailored models that use individual-level information and allowing model parameters to interact dynamically over time. We discuss promises and pitfalls of these strategies for improving disease insights and moving towards precision medicine.


Assuntos
Conectoma , Doenças Neurodegenerativas , Humanos , Medicina de Precisão , Encéfalo , Neuroimagem
2.
Proc Natl Acad Sci U S A ; 121(25): e2219137121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861593

RESUMO

Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.


Assuntos
Encéfalo , Humanos , Encéfalo/metabolismo , Animais , Adulto , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Padronização Corporal/genética , Feminino , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética
3.
Brain ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654513

RESUMO

Memory clinic patients are a heterogeneous population representing various aetiologies of pathological aging. It is unknown if divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease (AD) patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± SD age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (CU; n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (SCD; n = 342), mild cognitive impairment (MCI; n = 118), or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid AD biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5), as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test if baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and MCI conversion rates of CU and SCD participants. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy first affected the medial temporal lobes, followed by further temporal and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological AD biomarker levels, APOE ε4 carriership, and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive AD biomarkers and was associated with more generalised cognitive impairment. Limbic-predominant atrophy, in all and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of MCI conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, both on the subject and group level, were excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for AD in applied settings. The implementation of atrophy subtype- and stage-specific end-points may increase the statistical power of pharmacological trials targeting early AD.

4.
Brain ; 146(12): 4935-4948, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433038

RESUMO

Amyloid-ß is thought to facilitate the spread of tau throughout the neocortex in Alzheimer's disease, though how this occurs is not well understood. This is because of the spatial discordance between amyloid-ß, which accumulates in the neocortex, and tau, which accumulates in the medial temporal lobe during ageing. There is evidence that in some cases amyloid-ß-independent tau spreads beyond the medial temporal lobe where it may interact with neocortical amyloid-ß. This suggests that there may be multiple distinct spatiotemporal subtypes of Alzheimer's-related protein aggregation, with potentially different demographic and genetic risk profiles. We investigated this hypothesis, applying data-driven disease progression subtyping models to post-mortem neuropathology and in vivo PET-based measures from two large observational studies: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Religious Orders Study and Rush Memory and Aging Project (ROSMAP). We consistently identified 'amyloid-first' and 'tau-first' subtypes using cross-sectional information from both studies. In the amyloid-first subtype, extensive neocortical amyloid-ß precedes the spread of tau beyond the medial temporal lobe, while in the tau-first subtype, mild tau accumulates in medial temporal and neocortical areas prior to interacting with amyloid-ß. As expected, we found a higher prevalence of the amyloid-first subtype among apolipoprotein E (APOE) ε4 allele carriers while the tau-first subtype was more common among APOE ε4 non-carriers. Within tau-first APOE ε4 carriers, we found an increased rate of amyloid-ß accumulation (via longitudinal amyloid PET), suggesting that this rare group may belong within the Alzheimer's disease continuum. We also found that tau-first APOE ε4 carriers had several fewer years of education than other groups, suggesting a role for modifiable risk factors in facilitating amyloid-ß-independent tau. Tau-first APOE ε4 non-carriers, in contrast, recapitulated many of the features of primary age-related tauopathy. The rate of longitudinal amyloid-ß and tau accumulation (both measured via PET) within this group did not differ from normal ageing, supporting the distinction of primary age-related tauopathy from Alzheimer's disease. We also found reduced longitudinal subtype consistency within tau-first APOE ε4 non-carriers, suggesting additional heterogeneity within this group. Our findings support the idea that amyloid-ß and tau may begin as independent processes in spatially disconnected regions, with widespread neocortical tau resulting from the local interaction of amyloid-ß and tau. The site of this interaction may be subtype-dependent: medial temporal lobe in amyloid-first, neocortex in tau-first. These insights into the dynamics of amyloid-ß and tau may inform research and clinical trials that target these pathologies.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Proteínas tau/metabolismo , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Amiloide , Tomografia por Emissão de Pósitrons
5.
Brain ; 146(7): 2975-2988, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37150879

RESUMO

TAR DNA-binding protein-43 (TDP-43) accumulation is the primary pathology underlying several neurodegenerative diseases. Charting the progression and heterogeneity of TDP-43 accumulation is necessary to better characterize TDP-43 proteinopathies, but current TDP-43 staging systems are heuristic and assume each syndrome is homogeneous. Here, we use data-driven disease progression modelling to derive a fine-grained empirical staging system for the classification and differentiation of frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP, n = 126), amyotrophic lateral sclerosis (ALS, n = 141) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) with and without Alzheimer's disease (n = 304). The data-driven staging of ALS and FTLD-TDP complement and extend previously described human-defined staging schema for ALS and behavioural variant frontotemporal dementia. In LATE-NC individuals, progression along data-driven stages was positively associated with age, but negatively associated with age in individuals with FTLD-TDP. Using only regional TDP-43 severity, our data driven model distinguished individuals diagnosed with ALS, FTLD-TDP or LATE-NC with a cross-validated accuracy of 85.9%, with misclassifications associated with mixed pathological diagnosis, age and genetic mutations. Adding age and SuStaIn stage to this model increased accuracy to 92.3%. Our model differentiates LATE-NC from FTLD-TDP, though some overlap was observed between late-stage LATE-NC and early-stage FTLD-TDP. We further tested for the presence of subtypes with distinct regional TDP-43 progression patterns within each diagnostic group, identifying two distinct cortical-predominant and brainstem-predominant subtypes within FTLD-TDP and a further two subcortical-predominant and corticolimbic-predominant subtypes within ALS. The FTLD-TDP subtypes exhibited differing proportions of TDP-43 type, while there was a trend for age differing between ALS subtypes. Interestingly, a negative relationship between age and SuStaIn stage was seen in the brainstem/subcortical-predominant subtype of each proteinopathy. No subtypes were observed for the LATE-NC group, despite aggregating individuals with and without Alzheimer's disease and a larger sample size for this group. Overall, we provide an empirical pathological TDP-43 staging system for ALS, FTLD-TDP and LATE-NC, which yielded accurate classification. We further demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns that warrants further investigation in larger cross-cohort studies.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteinopatias TDP-43 , Humanos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/patologia , Doença de Alzheimer/patologia , Proteinopatias TDP-43/patologia , Degeneração Lobar Frontotemporal/patologia , Proteínas de Ligação a DNA/genética
6.
Neuroimage ; 263: 119609, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36064140

RESUMO

The Brain Imaging Data Structure (BIDS) is a specification accompanied by a software ecosystem that was designed to create reproducible and automated workflows for processing neuroimaging data. BIDS Apps flexibly build workflows based on the metadata detected in a dataset. However, even BIDS valid metadata can include incorrect values or omissions that result in inconsistent processing across sessions. Additionally, in large-scale, heterogeneous neuroimaging datasets, hidden variability in metadata is difficult to detect and classify. To address these challenges, we created a Python-based software package titled "Curation of BIDS" (CuBIDS), which provides an intuitive workflow that helps users validate and manage the curation of their neuroimaging datasets. CuBIDS includes a robust implementation of BIDS validation that scales to large samples and incorporates DataLad--a version control software package for data--as an optional dependency to ensure reproducibility and provenance tracking throughout the entire curation process. CuBIDS provides tools to help users perform quality control on their images' metadata and identify unique combinations of imaging parameters. Users can then execute BIDS Apps on a subset of participants that represent the full range of acquisition parameters that are present, accelerating pipeline testing on large datasets.


Assuntos
Ecossistema , Software , Humanos , Fluxo de Trabalho , Reprodutibilidade dos Testes , Neuroimagem/métodos
7.
Brain ; 144(9): 2771-2783, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33725124

RESUMO

In Alzheimer's disease, post-mortem studies have shown that the first cortical site where neurofibrillary tangles appear is the transentorhinal region, a subregion within the medial temporal lobe that largely overlaps with Brodmann area 35, and the entorhinal cortex. Here we used tau-PET imaging to investigate the sequence of tau pathology progression within the human medial temporal lobe and across regions in the posterior-medial system. Our objective was to study how medial temporal tau is related to functional connectivity, regional atrophy, and memory performance. We included 215 amyloid-ß- cognitively unimpaired, 81 amyloid-ß+ cognitively unimpaired and 87 amyloid-ß+ individuals with mild cognitive impairment, who each underwent 18F-RO948 tau and 18F-flutemetamol amyloid PET imaging, structural T1-MRI and memory assessments as part of the Swedish BioFINDER-2 study. First, event-based modelling revealed that the entorhinal cortex and Brodmann area 35 show the earliest signs of tau accumulation followed by the anterior and posterior hippocampus, Brodmann area 36 and the parahippocampal cortex. In later stages, tau accumulation became abnormal in neocortical temporal and finally parietal brain regions. Second, in cognitively unimpaired individuals, increased tau load was related to local atrophy in the entorhinal cortex, Brodmann area 35 and the anterior hippocampus and tau load in several anterior medial temporal lobe subregions was associated with distant atrophy of the posterior hippocampus. Tau load, but not atrophy, in these regions was associated with lower memory performance. Further, tau-related reductions in functional connectivity in critical networks between the medial temporal lobe and regions in the posterior-medial system were associated with this early memory impairment. Finally, in patients with mild cognitive impairment, the association of tau load in the hippocampus with memory performance was partially mediated by posterior hippocampal atrophy. In summary, our findings highlight the progression of tau pathology across medial temporal lobe subregions and its disease stage-specific association with memory performance. While tau pathology might affect memory performance in cognitively unimpaired individuals via reduced functional connectivity in critical medial temporal lobe-cortical networks, memory impairment in mild cognitively impaired patients is associated with posterior hippocampal atrophy.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Transtornos da Memória/metabolismo , Rede Nervosa/metabolismo , Proteínas tau/metabolismo , Idoso , Atrofia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos da Memória/diagnóstico por imagem , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
8.
Neuroimage ; 231: 117832, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549747

RESUMO

Resting-state functional connectivity is suggested to be cross-sectionally associated with both vascular burden and Alzheimer's disease (AD) pathology. However, evidence is lacking regarding longitudinal changes in functional connectivity. This study includes 247 cognitively unimpaired individuals with a family history of sporadic AD (185 women/ 62 men; mean [SD] age of 63 [5.3] years). Plasma total-, HDL-, and LDL-cholesterol and systolic and diastolic blood pressure were measured at baseline. Global (whole-brain) brain functional connectivity and connectivity from canonical functional networks were computed from resting-state functional MRI obtained at baseline and ~3.5 years of annual follow-ups, using a predefined functional parcellation. A subsample underwent Aß- and tau-PET (n=91). Linear mixed-effects models demonstrated that global functional connectivity increased over time across the entire sample. In contrast, higher total-cholesterol and LDL-cholesterol levels were associated with greater reduction of functional connectivity in the default-mode network over time. In addition, higher diastolic blood pressure was associated with global functional connectivity reduction. The associations were similar when the analyses were repeated using two other functional brain parcellations. Aß and tau deposition in the brain were not associated with changes in functional connectivity over time in the subsample. These findings provide evidence that vascular burden is associated with a decrease in functional connectivity over time in older adults with elevated risk for AD. Future studies are needed to determine if the impact of vascular risk factors on functional brain changes precede the impact of AD pathology on functional brain changes.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Imageamento por Ressonância Magnética/tendências , Rede Nervosa/diagnóstico por imagem , Doenças Vasculares/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Descanso/fisiologia , Fatores de Risco , Doenças Vasculares/fisiopatologia
9.
Brain ; 143(2): 635-649, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32040564

RESUMO

Age being the main risk factor for Alzheimer's disease, it is particularly challenging to disentangle structural changes related to normal brain ageing from those specific to Alzheimer's disease. Most studies aiming to make this distinction focused on older adults only and on a priori anatomical regions. Drawing on a large, multi-cohort dataset ranging from young adults (n = 468; age range 18-35 years), to older adults with intact cognition (n = 431; age range 55-90 years) and with Alzheimer's disease (n = 50 with late mild cognitive impairment and 71 with Alzheimer's dementia, age range 56-88 years), we investigated grey matter organization and volume differences in ageing and Alzheimer's disease. Using independent component analysis on all participants' structural MRI, we first derived morphometric networks and extracted grey matter volume in each network. We also derived a measure of whole-brain grey matter pattern organization by correlating grey matter volume in all networks across all participants from the same cohort. We used logistic regressions and receiver operating characteristic analyses to evaluate how well grey matter volume in each network and whole-brain pattern could discriminate between ageing and Alzheimer's disease. Because increased heterogeneity is often reported as one of the main features characterizing brain ageing, we also evaluated interindividual heterogeneity within morphometric networks and across the whole-brain organization in ageing and Alzheimer's disease. Finally, to investigate the clinical validity of the different grey matter features, we evaluated whether grey matter volume or whole-brain pattern was related to clinical progression in cognitively normal older adults. Ageing and Alzheimer's disease contributed additive effects on grey matter volume in nearly all networks, except frontal lobe networks, where differences in grey matter were more specific to ageing. While no networks specifically discriminated Alzheimer's disease from ageing, heterogeneity in grey matter volumes across morphometric networks and in the whole-brain grey matter pattern characterized individuals with cognitive impairments. Preservation of the whole-brain grey matter pattern was also related to lower risk of developing cognitive impairment, more so than grey matter volume. These results suggest both ageing and Alzheimer's disease involve widespread atrophy, but that the clinical expression of Alzheimer's disease is uniquely associated with disruption of morphometric organization.


Assuntos
Envelhecimento , Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Demência/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Disfunção Cognitiva/metabolismo , Demência/complicações , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Hum Brain Mapp ; 40(2): 638-651, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30368979

RESUMO

Previous positron emission tomography (PET) studies have quantified filamentous tau pathology using regions-of-interest (ROIs) based on observations of the topographical distribution of neurofibrillary tangles in post-mortem tissue. However, such approaches may not take full advantage of information contained in neuroimaging data. The present study employs an unsupervised data-driven method to identify spatial patterns of tau-PET distribution, and to compare these patterns to previously published "pathology-driven" ROIs. Tau-PET patterns were identified from a discovery sample comprised of 123 normal controls and patients with mild cognitive impairment or Alzheimer's disease (AD) dementia from the Swedish BioFINDER cohort, who underwent [18 F]AV1451 PET scanning. Associations with cognition were tested in a separate sample of 90 individuals from ADNI. BioFINDER [18 F]AV1451 images were entered into a robust voxelwise stable clustering algorithm, which resulted in five clusters. Mean [18 F]AV1451 uptake in the data-driven clusters, and in 35 previously published pathology-driven ROIs, was extracted from ADNI [18 F]AV1451 scans. We performed linear models comparing [18 F]AV1451 signal across all 40 ROIs to tests of global cognition and episodic memory, adjusting for age, sex, and education. Two data-driven ROIs consistently demonstrated the strongest or near-strongest effect sizes across all cognitive tests. Inputting all regions plus demographics into a feature selection routine resulted in selection of two ROIs (one data-driven, one pathology-driven) and education, which together explained 28% of the variance of a global cognitive composite score. Our findings suggest that [18 F]AV1451-PET data naturally clusters into spatial patterns that are biologically meaningful and that may offer advantages as clinical tools.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Neuroimagem/métodos , Reconhecimento Automatizado de Padrão/métodos , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Carbolinas , Análise por Conglomerados , Estudos de Coortes , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino
11.
Brain ; 141(6): 1871-1883, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688388

RESUMO

See Tijms and Visser (doi:10.1093/brain/awy113) for a scientific commentary on this article.Alzheimer's disease is preceded by a lengthy 'preclinical' stage spanning many years, during which subtle brain changes occur in the absence of overt cognitive symptoms. Predicting when the onset of disease symptoms will occur is an unsolved challenge in individuals with sporadic Alzheimer's disease. In individuals with autosomal dominant genetic Alzheimer's disease, the age of symptom onset is similar across generations, allowing the prediction of individual onset times with some accuracy. We extend this concept to persons with a parental history of sporadic Alzheimer's disease to test whether an individual's symptom onset age can be informed by the onset age of their affected parent, and whether this estimated onset age can be predicted using only MRI. Structural and functional MRIs were acquired from 255 ageing cognitively healthy subjects with a parental history of sporadic Alzheimer's disease from the PREVENT-AD cohort. Years to estimated symptom onset was calculated as participant age minus age of parental symptom onset. Grey matter volume was extracted from T1-weighted images and whole-brain resting state functional connectivity was evaluated using degree count. Both modalities were summarized using a 444-region cortical-subcortical atlas. The entire sample was divided into training (n = 138) and testing (n = 68) sets. Within the training set, individuals closer to or beyond their parent's symptom onset demonstrated reduced grey matter volume and altered functional connectivity, specifically in regions known to be vulnerable in Alzheimer's disease. Machine learning was used to identify a weighted set of imaging features trained to predict years to estimated symptom onset. This feature set alone significantly predicted years to estimated symptom onset in the unseen testing data. This model, using only neuroimaging features, significantly outperformed a similar model instead trained with cognitive, genetic, imaging and demographic features used in a traditional clinical setting. We next tested if these brain properties could be generalized to predict time to clinical progression in a subgroup of 26 individuals from the Alzheimer's Disease Neuroimaging Initiative, who eventually converted either to mild cognitive impairment or to Alzheimer's dementia. The feature set trained on years to estimated symptom onset in the PREVENT-AD predicted variance in time to clinical conversion in this separate longitudinal dataset. Adjusting for participant age did not impact any of the results. These findings demonstrate that years to estimated symptom onset or similar measures can be predicted from brain features and may help estimate presymptomatic disease progression in at-risk individuals.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Transtornos Cognitivos/etiologia , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Mapeamento Encefálico , Transtornos Cognitivos/diagnóstico por imagem , Disfunção Cognitiva , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
12.
J Neurosci ; 36(50): 12559-12569, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27807030

RESUMO

Aging is accompanied by profound changes in the brain's dopamine system that affect cognitive function. Evidence of powerful individual differences in cognitive aging has sharpened focus on identifying biological factors underlying relative preservation versus vulnerability to decline. Dopamine represents a key target in these efforts. Alterations of dopamine receptors and dopamine synthesis are seen in aging, with receptors generally showing reduction and synthesis demonstrating increases. Using the PET tracer 6-[18F]fluoro-l-m-tyrosine, we found strong support for upregulated striatal dopamine synthesis capacity in healthy older adult humans free of amyloid pathology, relative to young people. We next used fMRI to define the functional impact of elevated synthesis capacity on cognitive flexibility, a core component of executive function. We found clear evidence in young adults that low levels of synthesis capacity were suboptimal, associated with diminished cognitive flexibility and altered frontoparietal activation relative to young adults with highest synthesis values. Critically, these relationships between dopamine, performance, and activation were transformed in older adults with higher synthesis capacity. Variability in synthesis capacity was related to intrinsic frontoparietal functional connectivity across groups, suggesting that striatal dopamine synthesis influences the tuning of networks underlying cognitive flexibility. Together, these findings define striatal dopamine's association with cognitive flexibility and its neural underpinnings in young adults, and reveal the alteration in dopamine-related neural processes in aging. SIGNIFICANCE STATEMENT: Few studies have combined measurement of brain dopamine with examination of the neural basis of cognition in youth and aging to delineate the underlying mechanisms of these associations. Combining in vivo PET imaging of dopamine synthesis capacity, fMRI, and a sensitive measure of cognitive flexibility, we reveal three core findings. First, we find evidence supporting older adults' capacity to upregulate dopamine synthesis. Second, we define relationships between dopamine, cognition, and frontoparietal activity in young adults indicating high levels of synthesis capacity are optimal. Third, we demonstrate alteration of these relationships in older adults, suggesting neurochemical modulation of cognitive flexibility changes with age.


Assuntos
Envelhecimento/fisiologia , Cognição/fisiologia , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Dopamina/biossíntese , Função Executiva/fisiologia , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Neostriado/metabolismo , Testes Neuropsicológicos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Tomografia por Emissão de Pósitrons , Tempo de Reação/fisiologia , Adulto Jovem
13.
Cereb Cortex ; 26(2): 695-707, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25405944

RESUMO

Beta-amyloid (Aß) deposition is one of the hallmarks of Alzheimer's disease (AD). However, it is also present in some cognitively normal elderly adults and may represent a preclinical disease state. While AD patients exhibit disrupted functional connectivity (FC) both within and between resting-state networks, studies of preclinical cases have focused primarily on the default mode network (DMN). The extent to which Aß-related effects occur outside of the DMN and between networks remains unclear. In the present study, we examine how within- and between-network FC are related to both global and regional Aß deposition as measured by [(11)C]PIB-PET in 92 cognitively normal older people. We found that within-network FC changes occurred in multiple networks, including the DMN. Changes of between-network FC were also apparent, suggesting that regions maintaining connections to multiple networks may be particularly susceptible to Aß-induced alterations. Cortical regions showing altered FC clustered in parietal and temporal cortex, areas known to be susceptible to AD pathology. These results likely represent a mix of local network disruption, compensatory reorganization, and impaired control network function. They indicate the presence of Aß-related dysfunction of neural systems in cognitively normal people well before these areas become hypometabolic with the onset of cognitive decline.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Mapeamento Encefálico , Encéfalo/metabolismo , Descanso , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Compostos de Anilina/farmacocinética , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Isótopos de Carbono/farmacocinética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Oxigênio/sangue , Tomografia por Emissão de Pósitrons , Análise de Regressão , Tiazóis/farmacocinética , Adulto Jovem
14.
Brain ; 138(Pt 9): 2732-49, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26141491

RESUMO

A 'frontal variant of Alzheimer's disease' has been described in patients with predominant behavioural or dysexecutive deficits caused by Alzheimer's disease pathology. The description of this rare Alzheimer's disease phenotype has been limited to case reports and small series, and many clinical, neuroimaging and neuropathological characteristics are not well understood. In this retrospective study, we included 55 patients with Alzheimer's disease with a behavioural-predominant presentation (behavioural Alzheimer's disease) and a neuropathological diagnosis of high-likelihood Alzheimer's disease (n = 17) and/or biomarker evidence of Alzheimer's disease pathology (n = 44). In addition, we included 29 patients with autopsy/biomarker-defined Alzheimer's disease with a dysexecutive-predominant syndrome (dysexecutive Alzheimer's disease). We performed structured chart reviews to ascertain clinical features. First symptoms were more often cognitive (behavioural Alzheimer's disease: 53%; dysexecutive Alzheimer's disease: 83%) than behavioural (behavioural Alzheimer's disease: 25%; dysexecutive Alzheimer's disease: 3%). Apathy was the most common behavioural feature, while hyperorality and perseverative/compulsive behaviours were less prevalent. Fifty-two per cent of patients with behavioural Alzheimer's disease met diagnostic criteria for possible behavioural-variant frontotemporal dementia. Overlap between behavioural and dysexecutive Alzheimer's disease was modest (9/75 patients). Sixty per cent of patients with behavioural Alzheimer's disease and 40% of those with the dysexecutive syndrome carried at least one APOE ε4 allele. We also compared neuropsychological test performance and brain atrophy (applying voxel-based morphometry) with matched autopsy/biomarker-defined typical (amnestic-predominant) Alzheimer's disease (typical Alzheimer's disease, n = 58), autopsy-confirmed/Alzheimer's disease biomarker-negative behavioural variant frontotemporal dementia (n = 59), and controls (n = 61). Patients with behavioural Alzheimer's disease showed worse memory scores than behavioural variant frontotemporal dementia and did not differ from typical Alzheimer's disease, while executive function composite scores were lower compared to behavioural variant frontotemporal dementia and typical Alzheimer's disease. Voxel-wise contrasts between behavioural and dysexecutive Alzheimer's disease patients and controls revealed marked atrophy in bilateral temporoparietal regions and only limited atrophy in the frontal cortex. In direct comparison with behavioural and those with dysexecutive Alzheimer's disease, patients with behavioural variant frontotemporal dementia showed more frontal atrophy and less posterior involvement, whereas patients with typical Alzheimer's disease were slightly more affected posteriorly and showed less frontal atrophy (P < 0.001 uncorrected). Among 24 autopsied behavioural Alzheimer's disease/dysexecutive Alzheimer's disease patients, only two had primary co-morbid FTD-spectrum pathology (progressive supranuclear palsy). In conclusion, behavioural Alzheimer's disease presentations are characterized by a milder and more restricted behavioural profile than in behavioural variant frontotemporal dementia, co-occurrence of memory dysfunction and high APOE ε4 prevalence. Dysexecutive Alzheimer's disease presented as a primarily cognitive phenotype with minimal behavioural abnormalities and intermediate APOE ε4 prevalence. Both behavioural Alzheimer's disease and dysexecutive Alzheimer's disease presentations are distinguished by temporoparietal-predominant atrophy. Based on the relative sparing of frontal grey matter, we propose to redefine these clinical syndromes as 'the behavioural/dysexecutive variant of Alzheimer's disease' rather than frontal variant Alzheimer's disease. Further work is needed to determine whether behavioural and dysexecutive-predominant presentations of Alzheimer's disease represent distinct phenotypes or a single continuum.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Encéfalo/patologia , Transtornos Cognitivos/etiologia , Função Executiva/fisiologia , Transtornos Mentais/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Análise de Variância , Apolipoproteínas E/genética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons
15.
Brain ; 138(Pt 7): 2020-33, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25953778

RESUMO

Amyloid-ß, a hallmark of Alzheimer's disease, begins accumulating up to two decades before the onset of dementia, and can be detected in vivo applying amyloid-ß positron emission tomography tracers such as carbon-11-labelled Pittsburgh compound-B. A variety of thresholds have been applied in the literature to define Pittsburgh compound-B positron emission tomography positivity, but the ability of these thresholds to detect early amyloid-ß deposition is unknown, and validation studies comparing Pittsburgh compound-B thresholds to post-mortem amyloid burden are lacking. In this study we first derived thresholds for amyloid positron emission tomography positivity using Pittsburgh compound-B positron emission tomography in 154 cognitively normal older adults with four complementary approaches: (i) reference values from a young control group aged between 20 and 30 years; (ii) a Gaussian mixture model that assigned each subject a probability of being amyloid-ß-positive or amyloid-ß-negative based on Pittsburgh compound-B index uptake; (iii) a k-means cluster approach that clustered subjects into amyloid-ß-positive or amyloid-ß-negative based on Pittsburgh compound-B uptake in different brain regions (features); and (iv) an iterative voxel-based analysis that further explored the spatial pattern of early amyloid-ß positron emission tomography signal. Next, we tested the sensitivity and specificity of the derived thresholds in 50 individuals who underwent Pittsburgh compound-B positron emission tomography during life and brain autopsy (mean time positron emission tomography to autopsy 3.1 ± 1.8 years). Amyloid at autopsy was classified using Consortium to Establish a Registry for Alzheimer's Disease (CERAD) criteria, unadjusted for age. The analytic approaches yielded low thresholds (standard uptake value ratiolow = 1.21, distribution volume ratiolow = 1.08) that represent the earliest detectable Pittsburgh compound-B signal, as well as high thresholds (standard uptake value ratiohigh = 1.40, distribution volume ratiohigh = 1.20) that are more conservative in defining Pittsburgh compound-B positron emission tomography positivity. In voxel-wise contrasts, elevated Pittsburgh compound-B retention was first noted in the medial frontal cortex, then the precuneus, lateral frontal and parietal lobes, and finally the lateral temporal lobe. When compared to post-mortem amyloid burden, low proposed thresholds were more sensitive than high thresholds (sensitivities: distribution volume ratiolow 81.0%, standard uptake value ratiolow 83.3%; distribution volume ratiohigh 61.9%, standard uptake value ratiohigh 62.5%) for CERAD moderate-to-frequent neuritic plaques, with similar specificity (distribution volume ratiolow 95.8%; standard uptake value ratiolow, distribution volume ratiohigh and standard uptake value ratiohigh 100.0%). A receiver operator characteristic analysis identified optimal distribution volume ratio (1.06) and standard uptake value ratio (1.20) thresholds that were nearly identical to the a priori distribution volume ratiolow and standard uptake value ratiolow. In summary, we found that frequently applied thresholds for Pittsburgh compound-B positivity (typically at or above distribution volume ratiohigh and standard uptake value ratiohigh) are overly stringent in defining amyloid positivity. Lower thresholds in this study resulted in higher sensitivity while not compromising specificity.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/análise , Compostos de Anilina , Tomografia por Emissão de Pósitrons/normas , Compostos Radiofarmacêuticos , Tiazóis , Idoso , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Valores de Referência , Adulto Jovem
16.
Hum Brain Mapp ; 36(11): 4421-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26260856

RESUMO

Alzheimer's disease (AD) can present with distinct clinical variants. Identifying the earliest neurodegenerative changes associated with each variant has implications for early diagnosis, and for understanding the mechanisms that underlie regional vulnerability and disease progression in AD. We performed voxel-based morphometry to detect atrophy patterns in early clinical stages of four AD phenotypes: Posterior cortical atrophy (PCA, "visual variant," n=93), logopenic variant primary progressive aphasia (lvPPA, "language variant," n=74), and memory-predominant AD categorized as early age-of-onset (EOAD, <65 years, n=114) and late age-of-onset (LOAD, >65 years, n=114). Patients with each syndrome were stratified based on: (1) degree of functional impairment, as measured by the clinical dementia rating (CDR) scale, and (2) overall extent of brain atrophy, as measured by a neuroimaging approach that sums the number of brain voxels showing significantly lower gray matter volume than cognitively normal controls (n=80). Even at the earliest clinical stage (CDR=0.5 or bottom quartile of overall atrophy), patients with each syndrome showed both common and variant-specific atrophy. Common atrophy across variants was found in temporoparietal regions that comprise the posterior default mode network (DMN). Early syndrome-specific atrophy mirrored functional brain networks underlying functions that are uniquely affected in each variant: Language network in lvPPA, posterior cingulate cortex-hippocampal circuit in amnestic EOAD and LOAD, and visual networks in PCA. At more advanced stages, atrophy patterns largely converged across AD variants. These findings support a model in which neurodegeneration selectively targets both the DMN and syndrome-specific vulnerable networks at the earliest clinical stages of AD.


Assuntos
Doença de Alzheimer/patologia , Afasia Primária Progressiva/patologia , Córtex Cerebral/patologia , Rede Nervosa/patologia , Idade de Início , Idoso , Doença de Alzheimer/classificação , Doença de Alzheimer/fisiopatologia , Animais , Afasia Primária Progressiva/fisiopatologia , Atrofia/patologia , Córtex Cerebral/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Fenótipo , Síndrome
17.
medRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38947084

RESUMO

The pathophysiology underlying various manifestations of cerebral small vessel disease (cSVD) remains obscure. Using cerebrospinal fluid proximity extension assays and co-expression network analysis of 2,943 proteins, we found common and distinct proteomic signatures between white matter lesions (WML), microbleeds and infarcts measured in 856 living patients, and validated WML-associated proteins in three additional datasets. Proteins indicative of extracellular matrix dysregulation and vascular remodeling, including ELN, POSTN, CCN2 and MMP12 were elevated across all cSVD manifestations, with MMP12 emerging as an early cSVD indicator. cSVD-associated proteins formed a co-abundance network linked to metabolism and enriched in endothelial and arterial smooth muscle cells, showing elevated levels at early disease manifestations. Later disease stages involved changes in microglial proteins, associated with longitudinal WML progression, and changes in neuronal proteins mediating WML-associated cognitive decline. These findings provide an atlas of novel cSVD biomarkers and a promising roadmap for the next generation of cSVD therapeutics.

18.
Nat Commun ; 15(1): 5133, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879548

RESUMO

Lewy body (LB) diseases, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. Here we apply a data-driven disease progression model to regional neuropathological LB density scores from 814 brain donors with Lewy pathology. We describe three inferred trajectories of LB pathology that are characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) show earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) initially exhibit abnormalities in brainstem regions. Early limbic pathology is associated with Alzheimer's disease-associated characteristics while early brainstem pathology is associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in Lewy body disease.


Assuntos
Progressão da Doença , Corpos de Lewy , Doença por Corpos de Lewy , alfa-Sinucleína , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , alfa-Sinucleína/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Tronco Encefálico/patologia , Tronco Encefálico/metabolismo , Corpos de Lewy/patologia , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , Bulbo Olfatório/patologia , Bulbo Olfatório/metabolismo
19.
Nat Aging ; 4(5): 694-708, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514824

RESUMO

Biological staging of individuals with Alzheimer's disease (AD) may improve diagnostic and prognostic workup of dementia in clinical practice and the design of clinical trials. In this study, we used the Subtype and Stage Inference (SuStaIn) algorithm to establish a robust biological staging model for AD using cerebrospinal fluid (CSF) biomarkers. Our analysis involved 426 participants from BioFINDER-2 and was validated in 222 participants from the Knight Alzheimer Disease Research Center cohort. SuStaIn identified a singular biomarker sequence and revealed that five CSF biomarkers effectively constituted a reliable staging model (ordered: Aß42/40, pT217/T217, pT205/T205, MTBR-tau243 and non-phosphorylated mid-region tau). The CSF stages (0-5) demonstrated a correlation with increased abnormalities in other AD-related biomarkers, such as Aß-PET and tau-PET, and aligned with longitudinal biomarker changes reflective of AD progression. Higher CSF stages at baseline were associated with an elevated hazard ratio of clinical decline. This study highlights a common molecular pathway underlying AD pathophysiology across all patients, suggesting that a single CSF collection can accurately indicate the presence of AD pathologies and characterize the stage of disease progression. The proposed staging model has implications for enhancing diagnostic and prognostic assessments in both clinical practice and the design of clinical trials.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Proteínas tau , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico , Humanos , Biomarcadores/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Feminino , Masculino , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Idoso , Progressão da Doença , Fragmentos de Peptídeos/líquido cefalorraquidiano , Algoritmos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons
20.
Nat Rev Neurol ; 20(4): 232-244, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38429551

RESUMO

Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-ß and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA