Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(42): 22245-22255, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39383325

RESUMO

Colloidal supraparticles are micrometer-scale assemblies of primary particles. These supraparticles have potential application in photonic materials, catalysis, gas adsorption, and drug delivery. Thus, the synthesis of colloidal supraparticles with a narrow size distribution and high yield has become essential. Here, we demonstrate membrane emulsification as a high-throughput approach for fabricating spherical supraparticles with a narrow size distribution and control over particle size and crystallinity. Spherical supraparticles with well-ordered surface structures are synthesized by generating emulsion droplets of an aqueous colloidal dispersion in fluorocarbon oil using a Shirasu porous glass membrane followed by the consolidation of particles through water removal within the emulsion. We systematically investigate process parameters, including the flow rate of the particle dispersion, the particle concentration, and the average pore diameter of the membrane, on the mean size and size distribution of the supraparticles, revealing key factors governing supraparticle properties and production throughput. A comparative evaluation with commonly employed methods highlights the advantage of membrane emulsification, which combines well-defined internal structure and controlled supraparticle sizes with comparably high yields on the order of tens of grams per day. Importantly, in contrast to widely used droplet-based microfluidics, membrane emulsification allows fabrication of supraparticles in nonfluorinated oil. Overall, membrane emulsification offers a simple yet versatile method for fabricating colloidal supraparticles with high quality and yield and may serve as a bridge between existing high-precision techniques, such as droplet-based microfluidics, and high-throughput processes with less control, such as spray-drying.

2.
Langmuir ; 40(18): 9529-9542, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648374

RESUMO

In this study, we systematically analyze the surface tension and Hansen solubility parameters (HSPs) of imidazolium-based ionic liquids (ILs) with different anions ([NTf2]-, [PF6]-, [I]-, and [Br]-). These anions are combined with the classical 1-alkyl-3-methyl-substituted imidazolium cations ([CnC1Im]+) and a group of oligoether-functionalized imidazolium cations ([(mPEGn)2Im]+) based on methylated polyethylene glycol (mPEGn). In detail, the influences of the length of the alkyl- and the mPEGn-chain, the anion size, and the water content are investigated experimentally. For [CnC1Im]+-based ILs, the surface tension decreases with increasing alkyl chain length in all cases, but the magnitude of this decrease depends on the size of the anion ([NTf2]- < [PF6]- < [Br]- ≤ [I]-). Molecular dynamics (MD) simulations on [CnC1Im]+-based ILs indicate that these differences are caused by the interplay of charged and uncharged domains, in particular in the different anions, which affects the ability of the alkyl chains of the cation to orient toward the liquid-gas interface. An increase in the mPEGn-chain length of the [(mPEGn)2Im][A] ILs does not significantly influence the surface tension. These changes upon variation of the cation/anion combination do not correlate with the evolution of the HSPs for the two sets of ILs. Finally, our data suggest that significant water contents up to water mole fractions of x(H2O) = 0.25 do not significantly affect the surface tension of the studied binary IL-water mixtures.

3.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34949640

RESUMO

The two-dimensional self-assembly of colloidal particles serves as a model system for fundamental studies of structure formation and as a powerful tool to fabricate functional materials and surfaces. However, the prevalence of hexagonal symmetries in such self-assembling systems limits its structural versatility. More than two decades ago, Jagla demonstrated that core-shell particles with two interaction length scales can form complex, nonhexagonal minimum energy configurations. Based on such Jagla potentials, a wide variety of phases including cluster lattices, chains, and quasicrystals have been theoretically discovered. Despite the elegance of this approach, its experimental realization has remained largely elusive. Here, we capitalize on the distinct interfacial morphology of soft particles to design two-dimensional assemblies with structural complexity. We find that core-shell particles consisting of a silica core surface functionalized with a noncrosslinked polymer shell efficiently spread at a liquid interface to form a two-dimensional polymer corona surrounding the core. We controllably grow such shells by iniferter-type controlled radical polymerization. Upon interfacial compression, the resulting core-shell particles arrange in well-defined dimer, trimer, and tetramer lattices before transitioning into complex chain and cluster phases. The experimental phase behavior is accurately reproduced by Monte Carlo simulations and minimum energy calculations, suggesting that the interfacial assembly interacts via a pairwise-additive Jagla-type potential. By comparing theory, simulation, and experiment, we narrow the Jagla g-parameter of the system to between 0.9 and 2. The possibility to control the interaction potential via the interfacial morphology provides a framework to realize structural features with unprecedented complexity from a simple, one-component system.

4.
Small ; 19(27): e2300241, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36932894

RESUMO

A drying droplet containing colloidal particles can consolidate into a spherical assembly called a supraparticle. Such supraparticles are inherently porous due to the spaces between the constituent primary particles. Here, the emergent, hierarchical porosity in spray-dried supraparticles is tailored via three distinct strategies acting at different length scales. First, mesopores (<10 nm) are introduced via the primary particles. Second, the interstitial pores are tuned from the meso- (35 nm) to the macro scale (250 nm) by controlling the primary particle size. Third, defined macropores (>100 nm) are introduced via templating polymer particles, which can be selectively removed by calcination. Combining all three strategies creates hierarchical supraparticles with fully tailored pore size distributions. Moreover, another level of the hierarchy is added by fabricating supra-supraparticles, using the supraparticles themselves as building blocks, which provide additional pores with micrometer dimensions. The interconnectivity of the pore networks within all supraparticle types is investigated via detailed textural and tomographic analysis. This work provides a versatile toolbox for designing porous materials with precisely tunable, hierarchical porosity from the meso- (3 nm) to the macroscale (≈10 µm) that can be utilized for applications in catalysis, chromatography, or adsorption.

5.
Langmuir ; 39(14): 5211-5221, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36989210

RESUMO

Colloidal crystals are excellent model systems to study self-assembly and structural coloration because their periodicities coincide with the wavelength range of visible light. Different assembly methods inherently introduce characteristic defects and irregularities, even with nearly monodisperse colloidal particles. Here, we investigate how these imperfections influence the structural coloration by comparing two techniques to obtain colloidal crystals. 3D colloidal crystals produced by convective assembly are well-ordered and periodically arranged but show microscopic cracks. (2+1)D colloidal crystals fabricated by stacking individual monolayers show a decreased hexagonal order and limited crystal registration between single monolayers in the z-direction. We investigate the optical properties of both systems by comparing identical numbers of layers using correlative microspectroscopy. These measurements show that the less ordered (2+1)D colloidal crystals exhibit higher reflected light intensities. Macroscopic reflection integrating all angles shows that the reflected light intensity levels out with an increasing number of layers, whereas incoherent scattering increases. Although both types of colloidal crystal show similar angle-dependent color shifts in specular reflection, the less-ordered structure of the (2+1)D colloidal crystal scatters light within a larger angular range under diffusive illumination. Our results suggest that structural coloration is surprisingly robust toward local defects and irregularities.

6.
Langmuir ; 39(14): 5222-5229, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36989478

RESUMO

Colloidal lithography utilizes self-assembled particle monolayers as lithographic masks to fabricate arrays of nanostructures by combination of directed evaporation and etching steps. This process provides complex nanostructures over macroscopic areas in a simple, convenient, and parallel fashion without requiring clean-room infrastructure and specialized equipment. The appeal of the method comes at the price of imperfections impairing the optical quality, especially for arrayed nanostructures relying on well-ordered lattices. Imperfections are often generically mentioned to rationalize the discrepancy between experimental and simulated resonances. Yet, little attention is given to detailed structure-property relationships connecting typical defects directly with the optical properties. Here, we use a correlative approach to connect nano- and microscopic defects occurring from the colloidal lithography process with the resulting local optical properties. We use nanohole arrays as a common plasmonic structure known to be sensitive to lattice imperfections. Correlative optical and electron microscopies reveal the individual role of packing order, organic impurities, and solid polymer bridges. Our findings show that simple cleaning processes with solvents and oxygen plasma already improve the optical quality but also highlight how well-controlled self-assembly processes are required for predictable optical properties of such nanostructures.

7.
Soft Matter ; 19(9): 1695-1704, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779972

RESUMO

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.

8.
Small ; 18(48): e2203068, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36253136

RESUMO

Optical microscale shear-stress indicator particles are of interest for the in situ recording of localized forces, e.g., during 3D printing or smart skins in robotic applications. Recently developed particle systems are based on optical responses enabled by integrated organic dyes. They thus suffer from potential chemical instability and cross-sensitivities toward humidity or temperature. These drawbacks can be circumvented using photonic balls as shear-stress indicator particles, which employ structural color as the element to record forces. Here, such photonic balls are prepared from silica and iron oxide nanoparticles via the scalable and fast spray-drying technique. Process parameters to create photonic balls with a disordered core and an ordered particle structure toward the exterior of the supraparticles are reported. This hybrid disordered-ordered structure is responsible for a color loss of the indicator particles during shear-stress application because of irreversible structural destruction. By adjusting the primary silica particle sizes, nearly all colors of the visible spectrum can be achieved and the sensitivity of the response to shear stress can be adjusted.


Assuntos
Fótons , Dióxido de Silício , Dióxido de Silício/química , Tamanho da Partícula
9.
Soft Matter ; 18(30): 5585-5597, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35849635

RESUMO

Spherical particles confined to liquid interfaces generally self-assemble into hexagonal patterns. It was theoretically predicted by Jagla two decades ago that such particles interacting via a soft repulsive potential are able to form complex, anisotropic assembly phases. Depending on the shape and range of the potential, the predicted minimum energy configurations include chains, rhomboid and square phases. We recently demonstrated that deformable core-shell particles consisting of a hard silica core and a soft poly(N-isopropylacrylamide) shell adsorbed at an air/water interface can form chain phases if the crosslinker is primarily incorporated around the silica core. Here, we systematically investigate the interfacial self-assembly behavior of such SiO2-PNIPAM core-shell particles as a function of crosslinker content and core size. We observe chain networks predominantly at low crosslinking densities and smaller core sizes, whereas higher crosslinking densities lead to the formation of rhomboid packing. We correlate these results with the interfacial morphologies of the different particle systems, where the ability to expand at the interface and form a thin corona at the periphery depends on the degree of crosslinking close to the core. We perform minimum energy calculations based on Jagla-type pair potentials with different shapes of the soft repulsive shoulder. We compare the theoretical phase diagram with experimental findings to infer to which extent the interfacial interactions of the experimental system may be captured by Jagla pair-wise interaction potentials.

10.
Angew Chem Int Ed Engl ; 61(16): e202117455, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35129874

RESUMO

Supraparticles are spherical colloidal crystals prepared by confined self-assembly processes. A particularly appealing property of these microscale structures is the structural color arising from interference of light with their building blocks. Here, we assemble supraparticles with high structural order that exhibit coloration from uniform, polyhedral metal-organic framework (MOF) particles. We analyse the structural coloration as a function of the size of these anisotropic building blocks and their internal structure. We attribute the angle-dependent coloration of the MOF supraparticles to the presence of ordered, onion-like layers at the outermost regions. Surprisingly, even though different shapes of the MOF particles have different propensities to form these onion layers, all supraparticle dispersions show well-visible macroscopic coloration, indicating that local ordering is sufficient to generate interference effects.

11.
Anal Chem ; 93(13): 5394-5402, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33724794

RESUMO

Bioinspired solid-state nanopores and nanochannels have attracted interest in the last two decades, as they are envisioned to advance future sensing, energy conversion, and separation concepts. Although much effort has been made regarding functionalization of these materials, multifunctionality and accurate positioning of functionalities with nanoscale precision still remain challenging. However, this precision is necessary to meet transport performance and complexity of natural pores in living systems, which are often based on nonequilibrium states and compartmentalization. In this work, a nanolocal functionalization and simultaneous localized sensing strategy inside a filtering mesoporous film using precisely placed plasmonic metal nanoparticles inside mesoporous films with pore accessibility control is demonstrated. A single layer of gold nanoparticles is incorporated into mesoporous thin films with precise spatial control along the nanoscale layer thickness. The local surface plasmon resonance is applied to induce a photopolymerization leading to a nanoscopic polymer shell around the particles and thus nanolocal polymer placement inside the mesoporous material. As near-field modes are sensitive to the dielectric properties of their surrounding, the in situ sensing capability is demonstrated using UV-vis spectroscopy. It is demonstrated that the sensing sensitivity only slightly decreases upon functionalization. The presented nanolocal placement of responsive functional polymers into nanopores offers a simultaneous filtering and nanoscopic readout function. Such a nanoscale local control is envisioned to have a strong impact onto the development of new transport and sensor concepts, especially as the system can be developed into higher complexity using different metal nanoparticles and additional design of mesoporous film filtering properties.

12.
Small ; 17(20): e2100487, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817974

RESUMO

The preparation of a highly ordered nanostructured transparent electrode based on a combination of nanosphere lithography and anodization is presented. The size of perfectly ordered pore domains is improved by an order of magnitude with respect to the state of the art. The concomitantly reduced density of defect pores increases the fraction of pores that are in good electrical contact with the underlying transparent conductive substrate. This improvement in structural quality translates directly and linearly into an improved performance of energy conversion devices built from such electrodes in a linear manner.


Assuntos
Óxido de Alumínio , Nanoestruturas , Eletrodos , Desempenho Físico Funcional
13.
Acc Chem Res ; 53(2): 414-424, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31940173

RESUMO

The confinement of colloidal particles at liquid interfaces offers many opportunities for materials design. Adsorption is driven by a reduction of the total free energy as the contact area between the two liquids is partially replaced by the particle. From an application point of view, particle-stabilized interfaces form emulsions and foams with superior stability. Liquid interfaces also effectively confine colloidal particles in two dimensions and therefore provide ideal model systems to fundamentally study particle interactions, dynamics, and self-assembly. With progress in the synthesis of nanomaterials, more and more complex and functional particles are available for such studies. In this Account, we focus on poly(N-isopropylacrylamide) nanogels and microgels. These are cross-linked polymeric particles that swell and soften by uptaking large amounts of water. The incorporated water can be partially expelled, causing a volume phase transition into a collapsed state when the temperature is increased above approximately 32 °C. Soft microgels adsorbed to liquid interfaces significantly deform under the influence of interfacial tension and assume cross sections exceeding their bulk dimensions. In particular, a pronounced corona forms around the microgel core, consisting of dangling chains at the microgel periphery. These polymer chains expand at the interface and strongly affect the interparticle interactions. The particle deformability therefore leads to a significantly more complex interfacial phase behavior that provides a rich playground to explore structure formation processes. We first discuss the characteristic "fried-egg" or core-corona morphology of individual microgels adsorbed to a liquid interface and comment on the dependence of this interfacial morphology on their physicochemical properties. We introduce different theoretical models to describe their interfacial morphology. In a second part, we introduce how ensembles of microgels interact and self-assemble at liquid interfaces. The core-corona morphology and the possibility to force these elements into overlap upon compression results in a complex phase behavior with a phase transition between microgels with extended and collapsed coronae. We discuss the influence of the internal particle architecture, also including core-shell microgels with rigid cores, on the phase behavior. Finally, we present new routes for the realization of more complex structures, resulting from multiple deposition protocols and from engineering the interaction potential of the individual particles.

14.
Langmuir ; 37(17): 5364-5375, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886318

RESUMO

Soft particles such as microgels can undergo significant and anisotropic deformations when adsorbed to a liquid interface. This, in turn, leads to a complex phase behavior upon compression. To date, experimental efforts have predominantly provided phenomenological links between microgel structure and resulting interfacial behavior, while simulations have not been entirely successful in reproducing experiments or predicting the minimal requirements for the desired phase behavior. Here, we develop a multiscale framework to link the molecular particle architecture to the resulting interfacial morphology and, ultimately, to the collective interfacial phase behavior. To this end, we investigate interfacial morphologies of different poly(N-isopropylacrylamide) particle systems using phase-contrast atomic force microscopy and correlate the distinct interfacial morphology with their bulk molecular architecture. We subsequently introduce a new coarse-grained simulation method that uses augmented potentials to translate this interfacial morphology into the resulting phase behavior upon compression. The main novelty of this method is the possibility to efficiently encode multibody interactions, the effects of which are key to distinguishing between heterostructural (anisotropic collapse) and isostructural (isotropic collapse) phase transitions. Our approach allows us to qualitatively resolve existing discrepancies between experiments and simulations. Notably, we demonstrate the first in silico account of the two-dimensional isostructural transition, which is frequently found in experiments but elusive in simulations. In addition, we provide the first experimental demonstration of a heterostructural transition to a chain phase in a single-component system, which has been theoretically predicted decades ago. Overall, our multiscale framework provides a phenomenological bridge between physicochemical soft-particle characteristics at the molecular scale and nanoscale and the collective self-assembly phenomenology at the macroscale, serving as a stepping stone toward an ultimately more quantitative and predictive design approach.

15.
Soft Matter ; 17(17): 4504-4516, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949612

RESUMO

Microgels, consisting of a swollen polymer network, exhibit a more complex self-assembly behavior compared to incompressible colloidal particles, because of their ability to deform at a liquid interface or collapse upon compression. Here, we investigate the collective phase behavior of two-dimensional binary mixtures of microgels confined at the air/water interface. We use stimuli-responsive poly(N-isopropylacrylamide) microgels with different crosslinking densities, and therefore different morphologies at the interface. We find that the minority microgel population introduces lattice defects in the ordered phase of the majority population, which, in contrast to bulk studies, do not heal out by partial deswelling to accommodate in the lattice. We subsequently investigate the interfacial phase behavior of these binary interfacial assemblies under compression. The binary system exhibits three distinct isostructural solid-solid phase transitions, during which the coronae between two small particles collapse first, followed by the collapse between small-large and large-large microgel pairs. A similar hierarchy of phase transitions is found for mixtures of microgels and core-shell particles. Simulations based on augmented potentials qualitatively reproduce the experimentally observed phase transitions. We rationalize the presence of this hierarchy in phase transitions from differences in the interfacial morphology between the species: the larger coronae of softer (and therefore larger) microgels provide a higher resistance to phase transitions compared to the smaller coronae of the more crosslinked microgels and core-shell particles. The control of phase transitions via the molecular architecture further allows the formation of characteristic, flower-like defects by introducing particles with "weaker" coronae that are more prone to collapse with their neighboring particles. Our findings underline the dominating role of the corona for interfacial microgel assemblies, which acts as an energy barrier, shifting the collapse to higher surface pressures.

16.
Soft Matter ; 17(22): 5581-5589, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33988219

RESUMO

Thermo-responsive microgel particles can exhibit a drastic volume shrinkage upon increasing the solvent temperature. Recently we found that the spreading of poly(N-isopropylacrylamide) (PNiPAm) microgels at a liquid interface under the influence of surface tension hinders the temperature-induced volume phase transition. In addition, we observed a hysteresis behavior upon temperature cycling, i.e. a different evolution in microgel size and shape depending on whether the microgel was initially adsorbed to the interface in expanded or collapsed state. Here, we model the volume phase transition of such microgels at an air/water interface by monomer-resolved Brownian dynamics simulations and compare the observed behavior with experiments. We reproduce the experimentally observed hysteresis in the microgel dimensions upon temperature variation. Our simulations did not observe any hysteresis for microgels dispersed in the bulk liquid, suggesting that it results from the distinct interfacial morphology of the microgel adsorbed at the liquid interface. An initially collapsed microgel brought to the interface and subjected to subsequent swelling and collapsing (resp. cooling and heating) will end up in a larger size than it had in the original collapsed state. Further temperature cycling, however, only shows a much reduced hysteresis, in agreement with our experimental observations. We attribute the hysteretic behavior to a kinetically trapped initial collapsed configuration, which relaxes upon expanding in the swollen state. We find a similar behavior for linear PNiPAm chains adsorbed to an interface. Our combined experimental - simulation investigation provides new insights into the volume phase transition of PNiPAm materials adsorbed to liquid interfaces.

17.
Nano Lett ; 20(3): 1883-1889, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32017578

RESUMO

The hypersonic phonon propagation in large-area two-dimensional colloidal crystals is probed by spontaneous micro Brillouin light scattering. The dispersion relation of thermally populated Lamb waves reveals multiband filtering due to three distinct types of acoustic band gaps. We find Bragg gaps accompanied by two types of hybridization gaps in both sub- and superwavelength regimes resulting from contact-based resonances and nanoparticle eigenmodes, respectively. The operating GHz frequencies can be tuned by particle size and depend on the adhesion at the contact interfaces. The experimental dispersion relations are well represented by a finite element method model enabling identification of observed modes. The presented approach also allows for contactless study of the contact stiffness of submicrometer particles, which reveals size effect deviating from macroscopic predictions.

18.
Small ; 16(17): e1906463, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32182405

RESUMO

In the context of sensing and transport control, nanopores play an essential role. Designing multifunctional nanopores and placing multiple surface functionalities with nanoscale precision remains challenging. Interface effects together with a combination of different materials are used to obtain local multifunctionalization of nanoscale pores within a model pore system prepared by colloidal templating. Silica inverse colloidal monolayers are first functionalized with a gold layer to create a hybrid porous architecture with two distinct gold nanostructures on the top surface as well as at the pore bottom. Using orthogonal silane- and thiol-based chemistry together with a control of the wetting state allows individual addressing of the different locations within each pore resulting in nanoscale localized functional placement of three different functional units. Ring-opening metathesis polymerization is used for inner silica-pore wall functionalization. The hydrophobized pores create a Cassie-Baxter wetting state with aqueous solutions of thiols, which enables an exclusive functionalization of the outer gold structures. In a third step, an ethanolic solution able to wet the pores is used to self-assemble a thiol-containing initiator at the pore bottom. Subsequent controlled radical polymerization provides functionalization of the pore bottom. It is demonstrated that the combination of orthogonal surface chemistry and controlled wetting states can be used for the localized functionalization of porous materials.

19.
Small ; 16(30): e2002076, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32578351

RESUMO

Additive manufacturing promises high flexibility and customized product design. Powder bed fusion processes use a laser to melt a polymer powder at predefined locations and iterate the scheme to build 3D objects. The design of flowable powders is a critical parameter for a successful fabrication process that currently limits the choice of available materials. Here, a bottom-up process is introduced to fabricate tailored polymer- and composite supraparticles for powder-based additive manufacturing processes by controlled aggregation of colloidal primary particles. These supraparticles exhibit a near-spherical shape and tailored composition, morphology, and surface roughness. These parameters can be precisely controlled by the mixing and size ratio of the primary particles. Polystyrene/silica composite particles are chosen as a model system to establish structure-property relations connecting shape, morphology, and surface roughness to the adhesion within the powder, which is accessed by tensile strength measurements. The adhesive properties are then connected to powder flowability and it is shown that the resulting powders allow the formation of dense powder films with uniform coverage. Finally, successful powder bed fusion is demonstrated by producing macroscopic single layer specimens with uniform distribution of nanoscale silica additives.

20.
Langmuir ; 36(7): 1793-1803, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32017853

RESUMO

The surface structure of biomaterials is of key importance to control its interactions with biological environments. Industrial fabrication and coating processes often introduce particulate nanostructures at implant surfaces. Understanding the cellular interaction with particle-based surface topologies and feature sizes in the colloidal length scale therefore offers the possibility to improve the biological response of synthetic biomaterials. Here, surfaces with controlled topography and regular feature sizes covering the relevant length scale of particulate coatings (100-1000 nm) are fabricated by colloidal templating. Using fluorescent microscopy, WST assay, and morphology analysis, results show that adhesion and attachment of bone-marrow derived murine stromal cells (ST2) are strongly influenced by the surface feature size while geometric details play an insignificant role. Quantitative analysis shows enhanced cell adhesion, spreading, viability, and activity when surface feature size decreases below 200 nm compared to flat surfaces, while larger feature sizes are detrimental to cell adhesion. Kinetic studies reveal that most cells on surfaces with larger features lose contact with the substrate over time. This study identifies colloidal templating as a simple method for creating highly defined model systems to investigate complex cell functions and provides design criteria for the choice of particulate coatings on commercial implant materials.


Assuntos
Osso e Ossos/citologia , Materiais Revestidos Biocompatíveis/química , Coloides/química , Células-Tronco Mesenquimais/metabolismo , Animais , Osso e Ossos/metabolismo , Adesão Celular , Membranas Artificiais , Camundongos , Propriedades de Superfície , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA