Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(3): e3002535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470868

RESUMO

Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.


Assuntos
Experimentação Animal , Animais de Laboratório , Animais , Reprodutibilidade dos Testes , Ritmo Circadiano/fisiologia , Mamíferos
2.
BMC Biol ; 21(1): 256, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953247

RESUMO

BACKGROUND: Traditionally, in biomedical animal research, laboratory rodents are individually examined in test apparatuses outside of their home cages at selected time points. However, the outcome of such tests can be influenced by various factors and valuable information may be missed when the animals are only monitored for short periods. These issues can be overcome by longitudinally monitoring mice and rats in their home cages. To shed light on the development of home cage monitoring (HCM) and the current state-of-the-art, a systematic review was carried out on 521 publications retrieved through PubMed and Web of Science. RESULTS: Both the absolute (~ × 26) and relative (~ × 7) number of HCM-related publications increased from 1974 to 2020. There was a clear bias towards males and individually housed animals, but during the past decade (2011-2020), an increasing number of studies used both sexes and group housing. In most studies, animals were kept for short (up to 4 weeks) time periods in the HCM systems; intermediate time periods (4-12 weeks) increased in frequency in the years between 2011 and 2020. Before the 2000s, HCM techniques were predominantly applied for less than 12 h, while 24-h measurements have been more frequent since the 2000s. The systematic review demonstrated that manual monitoring is decreasing in relation to automatic techniques but still relevant. Until (and including) the 1990s, most techniques were applied manually but have been progressively replaced by automation since the 2000s. Independent of the year of publication, the main behavioral parameters measured were locomotor activity, feeding, and social behaviors; the main physiological parameters were heart rate and electrocardiography. External appearance-related parameters were rarely examined in the home cages. Due to technological progress and application of artificial intelligence, more refined and detailed behavioral parameters have been investigated in the home cage more recently. CONCLUSIONS: Over the period covered in this study, techniques for HCM of mice and rats have improved considerably. This development is ongoing and further progress as well as validation of HCM systems will extend the applications to allow for continuous, longitudinal, non-invasive monitoring of an increasing range of parameters in group-housed small rodents in their home cages.


Assuntos
Inteligência Artificial , Comportamento Animal , Masculino , Feminino , Camundongos , Animais , Ratos , Comportamento Animal/fisiologia , Comportamento Social , Frequência Cardíaca/fisiologia , Animais Domésticos
3.
EMBO Rep ; 22(12): e53824, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34734666

RESUMO

Academic Core Facilities are optimally situated to improve the quality of preclinical research by implementing quality control measures and offering these to their users.

4.
Alcohol Alcohol ; 57(4): 405-412, 2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-33893472

RESUMO

AIMS: Recently we developed a model to study alcohol-seeking behaviour after withdrawal in a social context in female mice. The model raised several questions that we were eager to address to improve methodology. METHODS: In our model, female mice were group-housed in automated cages with three conditioned (CS+) corners and water in both sides of one separate non-conditioned corner. Water was available with opened doors at all the time of training. We established conditioning by pairing alcohol drinking with light cues. Here, we introduced prolonged access to increasing concentrations of alcohol instead of intermittent access. To study motivation to drink alcohol, we carried out the extinction tests on withdrawal days 1 (WD1) and 10 (WD10). During tests, the light cues were present in conditioned corners, but there was no liquid in the bottles. RESULTS: We found that the number of visits and nosepokes in the CS+ corner in the alcohol group was much higher than in the water group. Also, during training, the consumption of alcohol was increasing. In the extinction tests, we found that the number of nosepokes in the CS+ corner increased in the alcohol group on both WD1 and WD10. CONCLUSIONS: Our study supports that alcohol-seeking behaviour after withdrawal can be modelled and studied in group-housed animals and environments without social isolation.


Assuntos
Consumo de Bebidas Alcoólicas , Etanol , Animais , Sinais (Psicologia) , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Meio Social , Água
5.
PLoS Genet ; 15(9): e1008358, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31557158

RESUMO

Stressful life events are major environmental risk factors for anxiety disorders, although not all individuals exposed to stress develop clinical anxiety. The molecular mechanisms underlying the influence of environmental effects on anxiety are largely unknown. To identify biological pathways mediating stress-related anxiety and resilience to it, we used the chronic social defeat stress (CSDS) paradigm in male mice of two inbred strains, C57BL/6NCrl (B6) and DBA/2NCrl (D2), that differ in their susceptibility to stress. Using a multi-omics approach, we identified differential mRNA, miRNA and protein expression changes in the bed nucleus of the stria terminalis (BNST) and blood cells after chronic stress. Integrative gene set enrichment analysis revealed enrichment of mitochondrial-related genes in the BNST and blood of stressed mice. To translate these results to human anxiety, we investigated blood gene expression changes associated with exposure-induced panic attacks. Remarkably, we found reduced expression of mitochondrial-related genes in D2 stress-susceptible mice and in exposure-induced panic attacks in humans, but increased expression of these genes in B6 stress-susceptible mice. Moreover, stress-susceptible vs. stress-resilient B6 mice displayed more mitochondrial cross-sections in the post-synaptic compartment after CSDS. Our findings demonstrate mitochondrial-related alterations in gene expression as an evolutionarily conserved response in stress-related behaviors and validate the use of cross-species approaches in investigating the biological mechanisms underlying anxiety disorders.


Assuntos
Ansiedade/genética , Ansiedade/metabolismo , Estresse Psicológico/metabolismo , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Genômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , MicroRNAs/genética , Mitocôndrias , Proteômica , RNA Mensageiro/genética , Núcleos Septais/metabolismo , Estresse Psicológico/fisiopatologia , Transcriptoma/genética
6.
Eur J Neurosci ; 53(8): 2469-2482, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481269

RESUMO

Parvalbumin-positive interneurons (PV+) are a key component of inhibitory networks in the brain and are known to modulate memory and learning by shaping network activity. The mechanisms of PV+ neuron generation and maintenance are not fully understood, yet current evidence suggests that signalling via the glial cell line-derived neurotrophic factor (GDNF) receptor GFRα1 positively modulates the migration and differentiation of PV+ interneurons in the cortex. Whether GDNF also regulates PV+ cells in the hippocampus is currently unknown. In this study, we utilized a Gdnf "hypermorph" mouse model where GDNF is overexpressed from the native gene locus, providing greatly increased spatial and temporal specificity of protein expression over established models of ectopic expression. Gdnfwt/hyper mice demonstrated impairments in long-term memory performance in the Morris water maze test and an increase in inhibitory tone in the hippocampus measured electrophysiologically in acute brain slice preparations. Increased PV+ cell number was confirmed immunohistochemically in the hippocampus and in discrete cortical areas and an increase in epileptic seizure threshold was observed in vivo. The data consolidate prior evidence for the actions of GDNF as a regulator of PV+ cell development in the cortex and demonstrate functional effects upon network excitability via modulation of functional GABAergic signalling and under epileptic challenge.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Memória Espacial , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos , Parvalbuminas/metabolismo
7.
J Biomed Sci ; 28(1): 87, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34923968

RESUMO

BACKGROUND: Craving for alcohol, in other words powerful desire to drink after withdrawal, is an important contributor to the development and maintenance of alcoholism. Here, we studied the role of GDNF (glial cell line-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) on alcohol-seeking behavior in group-housed female mice. METHODS: We modeled alcohol-seeking behavior in C57Bl/6J female mice. The behavioral experiments in group-housed female mice were performed in an automated IntelliCage system. We conducted RT-qPCR analysis of Gdnf, Bdnf, Manf and Cdnf expression in different areas of the female mouse brain after alcohol drinking conditioning. We injected an adeno-associated virus (AAV) vector expressing human GDNF or BDNF in mouse nucleus accumbens (NAc) after ten days of alcohol drinking conditioning and assessed alcohol-seeking behavior. Behavioral data were analyzed by two-way repeated-measures ANOVA, and statistically significant effects were followed by Bonferroni's post hoc test. The student's t-test was used to analyze qPCR data. RESULTS: The RT-qPCR data showed that Gdnf mRNA level in NAc was more than four times higher (p < 0.0001) in the mice from the sweetened alcohol group compared to the water group. Our data showed a more than a two-fold decrease in Manf mRNA (p = 0.04) and Cdnf mRNA (p = 0.02) levels in the hippocampus and Manf mRNA in the VTA (p = 0.04) after alcohol consumption. Two-fold endogenous overexpression of Gdnf mRNA and lack of CDNF did not affect alcohol-seeking behavior. The AVV-GDNF overexpression in nucleus accumbens suppressed alcohol-seeking behavior while overexpression of BDNF did not. CONCLUSIONS: The effect of increased endogenous Gdnf mRNA level in female mice upon alcohol drinking has remained unknown. Our data suggest that an increase in endogenous GDNF expression upon alcohol drinking occurs in response to the activation of another mesolimbic reward pathway participant.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Fissura , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Núcleo Accumbens/metabolismo , Animais , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social
8.
Neurobiol Dis ; 134: 104696, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31783118

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) is neuroprotective for nigrostriatal dopamine neurons and restores dopaminergic function in animal models of Parkinson's disease (PD). To understand the role of CDNF in mammals, we generated CDNF knockout mice (Cdnf-/-), which are viable, fertile, and have a normal life-span. Surprisingly, an age-dependent loss of enteric neurons occurs selectively in the submucosal but not in the myenteric plexus. This neuronal loss is a consequence not of increased apoptosis but of neurodegeneration and autophagy. Quantitatively, the neurodegeneration and autophagy found in the submucosal plexus in duodenum, ileum and colon of the Cdnf-/- mouse are much greater than in those of Cdnf+/+ mice. The selective vulnerability of submucosal neurons to the absence of CDNF is reminiscent of the tendency of pathological abnormalities to occur in the submucosal plexus in biopsies of patients with PD. In contrast, the number of substantia nigra dopamine neurons and dopamine and its metabolite concentrations in the striatum are unaltered in Cdnf-/- mice; however, there is an age-dependent deficit in the function of the dopamine system in Cdnf-/- male mice analyzed. This is observed as D-amphetamine-induced hyperactivity, aberrant dopamine transporter function, and as increased D-amphetamine-induced dopamine release demonstrating that dopaminergic axon terminal function in the striatum of the Cdnf-/- mouse brain is altered. The deficiencies of Cdnf-/- mice, therefore, are reminiscent of those seen in early stages of Parkinson's disease.


Assuntos
Encéfalo/patologia , Encéfalo/fisiologia , Dopamina/metabolismo , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/fisiopatologia , Fatores de Crescimento Neural/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Animais , Apoptose , Autofagia , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/genética
10.
PLoS Genet ; 11(12): e1005710, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26681446

RESUMO

Degeneration of nigrostriatal dopaminergic system is the principal lesion in Parkinson's disease. Because glial cell line-derived neurotrophic factor (GDNF) promotes survival of dopamine neurons in vitro and in vivo, intracranial delivery of GDNF has been attempted for Parkinson's disease treatment but with variable success. For improving GDNF-based therapies, knowledge on physiological role of endogenous GDNF at the sites of its expression is important. However, due to limitations of existing genetic model systems, such knowledge is scarce. Here, we report that prevention of transcription of Gdnf 3'UTR in Gdnf endogenous locus yields GDNF hypermorphic mice with increased, but spatially unchanged GDNF expression, enabling analysis of postnatal GDNF function. We found that increased level of GDNF in the central nervous system increases the number of adult dopamine neurons in the substantia nigra pars compacta and the number of dopaminergic terminals in the dorsal striatum. At the functional level, GDNF levels increased striatal tissue dopamine levels and augmented striatal dopamine release and re-uptake. In a proteasome inhibitor lactacystin-induced model of Parkinson's disease GDNF hypermorphic mice were protected from the reduction in striatal dopamine and failure of dopaminergic system function. Importantly, adverse phenotypic effects associated with spatially unregulated GDNF applications were not observed. Enhanced GDNF levels up-regulated striatal dopamine transporter activity by at least five fold resulting in enhanced susceptibility to 6-OHDA, a toxin transported into dopamine neurons by DAT. Further, we report how GDNF levels regulate kidney development and identify microRNAs miR-9, miR-96, miR-133, and miR-146a as negative regulators of GDNF expression via interaction with Gdnf 3'UTR in vitro. Our results reveal the role of GDNF in nigrostriatal dopamine system postnatal development and adult function, and highlight the importance of correct spatial expression of GDNF. Furthermore, our results suggest that 3'UTR targeting may constitute a useful tool in analyzing gene function.


Assuntos
Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Doença de Parkinson Secundária/genética , Substância Negra/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/toxicidade , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Humanos , Rim/crescimento & desenvolvimento , Rim/metabolismo , Camundongos , Neostriado/metabolismo , Neostriado/patologia , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Substância Negra/patologia
11.
Neurobiol Dis ; 97(Pt B): 189-200, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189755

RESUMO

Drug addiction is a chronic brain disease and drugs of abuse cause long lasting neuroadaptations. Addiction is characterized by the loss of control over drug use despite harmful consequences, and high rates of relapse even after long periods of abstinence. Neurotrophic factors (NTFs) are well known for their actions on neuronal survival in the peripheral nervous system. Moreover, NTFs have been shown to be involved in synaptic plasticity in the brain. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) are two of the most studied NTFs and both of them have been reported to increase craving when administered into the mesocorticolimbic dopaminergic system after drug self-administration. Here we review recent data on BDNF and GDNF functions in addiction-related behavior and discuss them in relation to previous findings. Finally, we give an insight into how new technologies could aid in further elucidating the role of these factors in drug addiction.


Assuntos
Fatores de Crescimento Neural/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Humanos
12.
EMBO J ; 30(11): 2266-80, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21522131

RESUMO

Despite its key role in Alzheimer pathogenesis, the physiological function(s) of the amyloid precursor protein (APP) and its proteolytic fragments are still poorly understood. Previously, we generated APPsα knock-in (KI) mice expressing solely the secreted ectodomain APPsα. Here, we generated double mutants (APPsα-DM) by crossing APPsα-KI mice onto an APLP2-deficient background and show that APPsα rescues the postnatal lethality of the majority of APP/APLP2 double knockout mice. Surviving APPsα-DM mice exhibited impaired neuromuscular transmission, with reductions in quantal content, readily releasable pool, and ability to sustain vesicle release that resulted in muscular weakness. We show that these defects may be due to loss of an APP/Mint2/Munc18 complex. Moreover, APPsα-DM muscle showed fragmented post-synaptic specializations, suggesting impaired postnatal synaptic maturation and/or maintenance. Despite normal CNS morphology and unaltered basal synaptic transmission, young APPsα-DM mice already showed pronounced hippocampal dysfunction, impaired spatial learning and a deficit in LTP that could be rescued by GABA(A) receptor inhibition. Collectively, our data show that APLP2 and APP are synergistically required to mediate neuromuscular transmission, spatial learning and synaptic plasticity.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/deficiência , Animais , Cruzamentos Genéticos , Aprendizagem , Camundongos , Camundongos Knockout , Junção Neuromuscular/fisiologia , Plasticidade Neuronal , Transmissão Sináptica
13.
J Biomed Sci ; 21: 82, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25134447

RESUMO

BACKGROUND: Carbonic anhydrase VI (CA VI) is a secretory isozyme of the α-CA gene family. It is highly expressed in the salivary and mammary glands and secreted into saliva and milk. Although CA VI was first described as a gustatory protein, its exact functional roles have remained enigmatic. Interestingly, polymorphism of the CA6 gene was recently linked to bitter taste perception in humans. In this study, we compared the preference of Car6⁻/⁻ and wild-type mice for different taste modalities in an IntelliCage monitoring environment. Morphologies of taste buds, tongue papillae, and von Ebner's glands were evaluated by light microscopy. Cell proliferation and rate of apoptosis in tongue specimens were examined by Ki67 immunostaining and fluorescent DNA fragmentation staining, respectively. RESULTS: The behavioral follow up of the mice in an IntelliCage system revealed that Car6⁻/⁻ mice preferred 3 µM quinine (bitter) solution, whereas wild type mice preferred water. When the quinine concentration increased, both groups preferentially selected water. Histological analysis, Ki67 immunostaining and detection of apoptosis did not reveal any significant changes between tongue specimens of the knockout and wild type mice. CONCLUSIONS: Our knockout mouse model confirms that CA VI is involved in bitter taste perception. CA VI may be one of the factors which contribute to avoidance of bitter, potentially harmful, substances.


Assuntos
Anidrases Carbônicas/metabolismo , Modelos Biológicos , Papilas Gustativas/enzimologia , Percepção Gustatória/fisiologia , Glândulas de von Ebner/enzimologia , Animais , Anidrases Carbônicas/genética , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Knockout , Papilas Gustativas/citologia , Glândulas de von Ebner/citologia
14.
Brain Behav Immun ; 38: 237-48, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24561490

RESUMO

Immune activation in the brain has been shown to contribute to neurodevelopmental and pathological progression of mental disorders, and microglia play a central role in these processes. But how genetic predisposition and environmental risk factors may act in combination to affect microglial activation and the underlying molecular mechanisms are largely unclear. In this work, we studied the inflammatory profile of microglia across four inbred strains of mice with different anxiety traits: C57BL/6J, FVB/N, DBA/2J, and 129S2/Sv. Importantly, we found that a high-anxiety strain, naïve DBA/2J mice, had significantly more M1 (MHCII(+)CD206(-))-polarized microglia, whereas another high-anxiety strain, naïve 129S2/Sv mice, expressed significantly more activated (MHCII(+)) perivascular macrophages than the other strains. After a systemic LPS challenge, polarization to M1 microglia in DBA/2J and 129S2/Sv mice was even more prominent than in C57BL/6J and FVB/N mice, and was correlated with their anxiety-like behaviors. Macrophage M1/M2 polarization in the spleen showed a similar pattern in DBA/2J and 129S2/Sv mice in response to LPS stimulation. Furthermore, DBA/2J mice expressed higher mRNA levels of Il1b, Il6, and Tnf, and higher Nos2/Arg1 ratio but lower Chi3l3 level in the hypothalamus before and after LPS stimulation, respectively. In comparison, 129S1/Sv, a sibling line of 129S2/Sv, expressed significantly higher levels of other immune-related genes in the brain. We further discovered a group of myeloid transcription factors that may underpin the strain-specific differences in microglial activation. We conclude that proinflammatory microglial activation reflects anxiety traits in mice, especially after a peripheral innate immune challenge. Our work sheds new light in understanding the potential molecular mechanisms of stress-induced microglial activation and polarization.


Assuntos
Ansiedade/imunologia , Encéfalo/imunologia , Macrófagos/imunologia , Microglia/imunologia , Animais , Citocinas/biossíntese , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos
15.
Lab Anim ; 57(1): 79-83, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36148902

RESUMO

The key goal in biomedical research is a better understanding of disease aetiologies, which ideally results in strategies and recommendations for the prevention of diseases before they arise, and in the development of effective therapies. However, many concerns have been expressed about the reproducibility and the translational validity of preclinical research in animal models to inform clinical trials in humans. It has been proposed that improving internal, external and construct validity of animal studies will lead to improved translatability. Automated behaviour monitoring in the animal's home cage, which allows for longitudinal assessment of individual trajectories over sufficiently long intervals for (chronic) drug treatment or phenotype progression, is a promising solution to these problems.


Assuntos
Pesquisa Biomédica , Animais , Humanos , Reprodutibilidade dos Testes , Monitorização Fisiológica , Modelos Animais , Comportamento Animal
16.
Mol Brain ; 16(1): 43, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210550

RESUMO

Kainate type glutamate receptors (KARs) are strongly expressed in GABAergic interneurons and have the capability of modulating their functions via ionotropic and G-protein coupled mechanisms. GABAergic interneurons are critical for generation of coordinated network activity in both neonatal and adult brain, yet the role of interneuronal KARs in network synchronization remains unclear. Here, we show that GABAergic neurotransmission and spontaneous network activity is perturbed in the hippocampus of neonatal mice lacking GluK1 KARs selectively in GABAergic neurons. Endogenous activity of interneuronal GluK1 KARs maintains the frequency and duration of spontaneous neonatal network bursts and restrains their propagation through the hippocampal network. In adult male mice, the absence of GluK1 in GABAergic neurons led to stronger hippocampal gamma oscillations and enhanced theta-gamma cross frequency coupling, coinciding with faster spatial relearning in the Barnes maze. In females, loss of interneuronal GluK1 resulted in shorter sharp wave ripple oscillations and slightly impaired abilities in flexible sequencing task. In addition, ablation of interneuronal GluK1 resulted in lower general activity and novel object avoidance, while causing only minor anxiety phenotype. These data indicate a critical role for GluK1 containing KARs in GABAergic interneurons in regulation of physiological network dynamics in the hippocampus at different stages of development.


Assuntos
Hipocampo , Receptores de Ácido Caínico , Feminino , Animais , Masculino , Camundongos , Receptores de Ácido Caínico/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Transmissão Sináptica/fisiologia , Ácido Caínico
17.
Neuropsychopharmacology ; 48(7): 1021-1030, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36944718

RESUMO

Critical period-like plasticity (iPlasticity) can be reinstated in the adult brain by several interventions, including drugs and optogenetic modifications. We have demonstrated that a combination of iPlasticity with optimal training improves behaviors related to neuropsychiatric disorders. In this context, the activation of TrkB, a receptor for BDNF, in Parvalbumin-positive (PV+) interneurons has a pivotal role in cortical network changes. However, it is unknown if the activation of TrkB in PV+ interneurons is important for other plasticity-related behaviors, especially for learning and memory. Here, using mice with heterozygous conditional TrkB deletion in PV+ interneurons (PV-TrkB hCKO) in IntelliCage and fear erasure paradigms, we show that chronic treatment with fluoxetine, a widely prescribed antidepressant drug that is known to promote the activation of TrkB, enhances behavioral flexibility in spatial and fear memory, largely depending on the expression of the TrkB receptor in PV+ interneurons. In addition, hippocampal long-term potentiation was enhanced by chronic treatment with fluoxetine in wild-type mice, but not in PV-TrkB hCKO mice. Transcriptomic analysis of PV+ interneurons after fluoxetine treatment indicated intrinsic changes in synaptic formation and downregulation of enzymes involved in perineuronal net formation. Consistently, immunohistochemistry has shown that the fluoxetine treatment alters PV expression and reduces PNNs in PV+ interneurons, and here we show that TrkB expression in PV+ interneurons is required for these effects. Together, our results provide molecular and network mechanisms for the induction of critical period-like plasticity in adulthood.


Assuntos
Parvalbuminas , Reversão de Aprendizagem , Camundongos , Animais , Parvalbuminas/metabolismo , Fluoxetina/farmacologia , Receptor trkB/metabolismo , Interneurônios/fisiologia , Medo , Antidepressivos/farmacologia , Antidepressivos/metabolismo
18.
Behav Genet ; 42(3): 449-60, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22187051

RESUMO

The IntelliMaze allows automated behavioral analysis of group housed laboratory mice while individually assigned protocols can be applied concomitantly for different operant conditioning components. Here we evaluate the effect of additional component availability (enrichment) on behavioral and cognitive performance of mice in the IntelliCage, by focusing on aspects that had previously been found to consistently differ between three strains, in four European laboratories. Enrichment decreased the activity level in the IntelliCages and enhanced spatial learning performance. However, it did not alter strain differences, except for activity during the initial experimental phase. Our results from non-enriched IntelliCages proved consistent between laboratories, but overall laboratory-consistency for data collected using different IntelliCage set-ups, did not hold for activity levels during the initial adaptation phase. Our results suggest that the multiple conditioning in spatially and cognitively enriched environments are feasible without affecting external validity for a specific task, provided animals have adapted to such an IntelliMaze.


Assuntos
Cognição/fisiologia , Meio Ambiente , Aprendizagem em Labirinto/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Adaptação Psicológica/fisiologia , Animais , Peso Corporal/fisiologia , Extinção Psicológica/fisiologia , Feminino , Abrigo para Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Meio Social , Especificidade da Espécie
19.
Front Behav Neurosci ; 16: 835444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250504

RESUMO

Behavioral phenotyping of mice has received a great deal of attention during the past three decades. However, there is still a pressing need to understand the variability caused by environmental and biological factors, human interference, and poorly standardized experimental protocols. The inconsistency of results is often attributed to the inter-individual difference between the experimenters and environmental conditions. The present work aims to dissect the combined influence of the experimenter and the environment on the detection of behavioral traits in two inbred strains most commonly used in behavioral genetics due to their contrasting phenotypes, the C57BL/6J and DBA/2J mice. To this purpose, the elevated O-maze, the open field with object, the accelerating rotarod and the Barnes maze tests were performed by two experimenters in two diverse laboratory environments. Our findings confirm the well-characterized behavioral differences between these strains in exploratory behavior, motor performance, learning and memory. Moreover, the results demonstrate how the experimenter and the environment influence the behavioral tests with a variable-dependent effect, often with mutually exclusive contributions. In this context, our study highlights how both the experimenter and the environment can have an impact on the strain effect size without altering the direction of the conclusions. Importantly, the general agreement on the results is reached by converging evidence from multiple measures addressing the same trait. In conclusion, the present work elucidates the contribution of both the experimenter and the laboratory environment in the intricate field of reproducibility in mouse behavioral phenotyping.

20.
Transl Psychiatry ; 11(1): 538, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663781

RESUMO

Early life stress (ELS) is a well-characterized risk factor for mood and anxiety disorders. GABAergic microcircuits in the amygdala are critically implicated in anxiety; however, whether their function is altered after ELS is not known. Here we identify a novel mechanism by which kainate receptors (KARs) modulate feedforward inhibition in the lateral amygdala (LA) and show that this mechanism is downregulated after ELS induced by maternal separation (MS). Specifically, we show that in control rats but not after MS, endogenous activity of GluK1 subunit containing KARs disinhibit LA principal neurons during activation of cortical afferents. GluK1 antagonism attenuated excitability of parvalbumin (PV)-expressing interneurons, resulting in loss of PV-dependent inhibitory control and an increase in firing of somatostatin-expressing interneurons. Inactivation of Grik1 expression locally in the adult amygdala reduced ongoing GABAergic transmission and was sufficient to produce a mild anxiety-like behavioral phenotype. Interestingly, MS and GluK1-dependent phenotypes showed similar gender specificity, being detectable in male but not female rodents. Our data identify a novel KAR-dependent mechanism for cell-type and projection-specific functional modulation of the LA GABAergic microcircuit and suggest that the loss of GluK1 KAR function contributes to anxiogenesis after ELS.


Assuntos
Ansiedade , Receptores de Ácido Caínico , Estresse Psicológico , Animais , Masculino , Ratos , Tonsila do Cerebelo/metabolismo , Regulação para Baixo , Interneurônios/metabolismo , Privação Materna , Receptores de Ácido Caínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA