Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(5): 685-692, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639898

RESUMO

The movement of ions in and out of neurons can exert significant effects on neighboring cells. Here we report several experimentally important consequences of activation of the optogenetic chloride pump, halorhodopsin. We recorded extracellular K+ concentration ([K+]extra) in neocortical brain slices prepared from young adult mice (both sexes) which express halorhodopsin in pyramidal cells. Strong halorhodopsin activation induced a pronounced drop in [K+]extra that persisted for the duration of illumination. Pharmacological blockade of K+ channels reduced the amplitude of this drop, indicating that it represents K+ redistribution into cells during the period of hyperpolarization. Halorhodopsin thus drives the inward movement of both Cl- directly, and K+ secondarily. When the illumination period ended, a rebound surge in extracellular [K+] developed over tens of seconds, partly reflecting the previous inward redistribution of K+, but additionally driven by clearance of Cl- coupled to K+ by the potassium-chloride cotransporter, KCC2. The drop in [K+]extra during light activation leads to a small (2-3 mV) hyperpolarization also of other cells that do not express halorhodopsin. Its activation therefore has both direct and indirect inhibitory effects. Finally, we show that persistent strong activation of halorhodopsin causes cortical spreading depolarizations (CSDs), both in vitro and in vivo This novel means of triggering CSDs is unusual, in that the events can arise during the actual period of illumination, when neurons are being hyperpolarized and [K+]extra is low. We suggest that this fundamentally different experimental model of CSDs will open up new avenues of research to explain how they occur naturally.SIGNIFICANCE STATEMENT Halorhodopsin is a light-activated electrogenic chloride pump, which has been widely used to inhibit neurons optogenetically. Here, we demonstrate three previously unrecognized consequences of its use: (1) intense activation leads to secondary movement of K+ ions into the cells; (2) the resultant drop in extracellular [K+] reduces excitability also in other, nonexpressing cells; and (3) intense persistent halorhodopsin activation can trigger cortical spreading depolarization (CSD). Halorhodopsin-induced CSDs can occur when neurons are hyperpolarized and extracellular [K+] is low. This contrasts with the most widely used experimental models that trigger CSDs with high [K+]. Both models, however, are consistent with the hypothesis that CSDs arise following net inward ionic movement into the principal neuron population.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Potássio , Masculino , Feminino , Camundongos , Animais , Potássio/metabolismo , Halorrodopsinas/farmacologia , Cloretos/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia
2.
J Neuroinflammation ; 20(1): 176, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507711

RESUMO

Systemic inflammation triggers protective as well as pro-inflammatory responses in the brain based on neuronal and/or cytokine signaling, and it associates with acutely and protractedly disrupted cognition. However, the multiple mechanisms underlying the peripheral-central inflammatory signaling are still not fully characterized. We used intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) in freely moving mice with chronically implanted electrodes for recording of local field potentials (LFP) and electrocorticography (ECoG) in the hippocampus and neocortex, respectively. We show here that a sudden switch in the mode of network activity occurred in both areas starting at 10-15 min after the LPS injection, simultaneously with a robust change from exploration to sickness behavior. This switch in cortical mode commenced before any elevations in pro-inflammatory cytokines IL-1ß, TNFα, CCL2 or IL-6 were detected in brain tissue. Thereafter, this mode dominated cortical activity for the recording period of 3 h, except for a partial and transient recovery around 40 min post-LPS. These effects were closely paralleled by changes in ECoG spectral entropy. Continuous recordings for up to 72 h showed a protracted attenuation in hippocampal activity, while neocortical activity recovered after 48 h. The acute sickness behavior recovered by 72 h post-LPS. Notably, urethane (1.3 mg/kg) administered prior to LPS blocked the early effect of LPS on cortical activity. However, experiments under urethane anesthesia which were started 24 h post-LPS (with neuroinflammation fully developed before application of urethane) showed that both theta-supratheta and fast gamma CA1 activity were reduced, DG delta activity was increased, and sharp-wave ripples were abolished. Finally, we observed that experimental compensation of inflammation-induced hypothermia 24-48 h post-LPS promoted seizures and status epilepticus; and that LPS decreased the threshold of kainate-provoked seizures beyond the duration of acute sickness behavior indicating post-acute inflammatory hyperexcitability. Taken together, the strikingly fast development and initial independence of brain cytokines of the LPS-induced cortical mode, its spectral characteristics and simultaneity in hippocampus and neocortex, as well as inhibition by pre-applied urethane, strongly suggest that the underlying mechanisms are based on activation of the afferent vagus nerve and its mainly cholinergic ascending projections to higher brain areas.


Assuntos
Citocinas , Comportamento de Doença , Camundongos , Animais , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Encéfalo/metabolismo , Inflamação/induzido quimicamente , Convulsões , Uretana/farmacologia
3.
Epilepsia ; 62(8): 1971-1984, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34180051

RESUMO

OBJECTIVE: Seizures are common in neonates recovering from birth asphyxia but there is general consensus that current pharmacotherapy is suboptimal and that novel antiseizure drugs are needed. We recently showed in a rat model of birth asphyxia that seizures are triggered by the post-asphyxia recovery of brain pH. Here our aim was to investigate whether carbonic anhydrase inhibitors (CAIs), which induce systemic acidosis, block the post-asphyxia seizures. METHODS: The CAIs acetazolamide (AZA), benzolamide (BZA), and ethoxzolamide (EZA) were administered intraperitoneally or intravenously to 11-day-old rats exposed to intermittent asphyxia (30 min; three 7+3 min cycles of 9% and 5% O2 at 20% CO2 ). Electrode measurements of intracortical pH, Po2 , and local field potentials (LFPs) were made under urethane anesthesia. Convulsive seizures and blood acid-base parameters were examined in freely behaving animals. RESULTS: The three CAIs decreased brain pH by 0.14-0.17 pH units and suppressed electrographic post-asphyxia seizures. AZA, BZA, and EZA differ greatly in their lipid solubility (EZA > AZA > BZA) and pharmacokinetics. However, there were only minor differences in the delay (range 0.8-3.7 min) from intraperitoneal application to their action on brain pH. The CAIs induced a modest post-asphyxia elevation of brain Po2 that had no effect on LFP activity. AZA was tested in freely behaving rats, in which it induced a respiratory acidosis and decreased the incidence of convulsive seizures from 9 of 20 to 2 of 17 animals. SIGNIFICANCE: AZA, BZA, and EZA effectively block post-asphyxia seizures. Despite the differences in their pharmacokinetics, they had similar effects on brain pH, which indicates that their antiseizure mode of action was based on respiratory (hypercapnic) acidosis resulting from inhibition of blood-borne and extracellular vascular carbonic anhydrases. AZA has been used for several indications in neonates, suggesting that it can be safely repurposed for the treatment of neonatal seizures as an add-on to the current treatment regimen.


Assuntos
Acidose , Asfixia Neonatal , Acetazolamida/uso terapêutico , Animais , Asfixia/complicações , Asfixia/tratamento farmacológico , Inibidores da Anidrase Carbônica , Humanos , Recém-Nascido , Ratos , Convulsões/tratamento farmacológico , Convulsões/etiologia
4.
Epilepsia ; 62(4): 908-919, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33338272

RESUMO

OBJECTIVE: Birth asphyxia (BA) is often associated with seizures that may exacerbate the ensuing hypoxic-ischemic encephalopathy. In rodent models of BA, exposure to hypoxia is used to evoke seizures, that commence already during the insult. This is in stark contrast to clinical BA, in which seizures are typically seen upon recovery. Here, we introduce a term-equivalent rat model of BA, in which seizures are triggered after exposure to asphyxia. METHODS: Postnatal day 11-12 male rat pups were exposed to steady asphyxia (15 min; air containing 5% O2  + 20% CO2 ) or to intermittent asphyxia (30 min; three 5 + 5-min cycles of 9% and 5% O2 at 20% CO2 ). Cortical activity and electrographic seizures were recorded in freely behaving animals. Simultaneous electrode measurements of intracortical pH, Po2 , and local field potentials (LFPs) were made under urethane anesthesia. RESULTS: Both protocols decreased blood pH to <7.0 and brain pH from 7.3 to 6.7 and led to a fall in base excess by 20 mmol·L-1 . Electrographic seizures with convulsions spanning the entire Racine scale were triggered after intermittent but not steady asphyxia. In the presence of 20% CO2 , brain Po2 was only transiently affected by 9% ambient O2 but fell below detection level during the steps to 5% O2 , and LFP activity was nearly abolished. Post-asphyxia seizures were strongly suppressed when brain pH recovery was slowed down by 5% CO2 . SIGNIFICANCE: The rate of brain pH recovery has a strong influence on post-asphyxia seizure propensity. The recurring hypoxic episodes during intermittent asphyxia promote neuronal excitability, which leads to seizures only after the suppressing effect of the hypercapnic acidosis is relieved. The present rodent model of BA is to our best knowledge the first one in which, consistent with clinical BA, behavioral and electrographic seizures are triggered after and not during the BA-mimicking insult.


Assuntos
Asfixia/fisiopatologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Hipóxia/fisiopatologia , Animais , Animais Recém-Nascidos , Asfixia/etiologia , Hipóxia/complicações , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
5.
Proc Natl Acad Sci U S A ; 114(50): E10819-E10828, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29183979

RESUMO

During birth in mammals, a pronounced surge of fetal peripheral stress hormones takes place to promote survival in the transition to the extrauterine environment. However, it is not known whether the hormonal signaling involves central pathways with direct protective effects on the perinatal brain. Here, we show that arginine vasopressin specifically activates interneurons to suppress spontaneous network events in the perinatal hippocampus. Experiments done on the altricial rat and precocial guinea pig neonate demonstrated that the effect of vasopressin is not dependent on the level of maturation (depolarizing vs. hyperpolarizing) of postsynaptic GABAA receptor actions. Thus, the fetal mammalian brain is equipped with an evolutionarily conserved mechanism well-suited to suppress energetically expensive correlated network events under conditions of reduced oxygen supply at birth.


Assuntos
Encéfalo/embriologia , Interneurônios/fisiologia , Vasopressinas/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Potenciais Evocados , Feminino , Cobaias , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Masculino , Rede Nervosa/fisiologia , Parto , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo
6.
Nat Rev Neurosci ; 15(10): 637-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25234263

RESUMO

Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K(+)-Cl(-) cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity. Studying the functions of these transporters may lead to major paradigm shifts in our understanding of the mechanisms underlying brain development and plasticity in health and disease.


Assuntos
Encéfalo , Doenças do Sistema Nervoso Central , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Humanos , Modelos Moleculares , Simportadores de Cloreto de Sódio-Potássio/genética
7.
EMBO J ; 32(16): 2275-86, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23881097

RESUMO

Brain carbonic anhydrases (CAs) are known to modulate neuronal signalling. Using a novel CA VII (Car7) knockout (KO) mouse as well as a CA II (Car2) KO and a CA II/VII double KO, we show that mature hippocampal pyramidal neurons are endowed with two cytosolic isoforms. CA VII is predominantly expressed by neurons starting around postnatal day 10 (P10). The ubiquitous isoform II is expressed in neurons at P20. Both isoforms enhance bicarbonate-driven GABAergic excitation during intense GABAA-receptor activation. P13-14 CA VII KO mice show behavioural manifestations atypical of experimental febrile seizures (eFS) and a complete absence of electrographic seizures. A low dose of diazepam promotes eFS in P13-P14 rat pups, whereas seizures are blocked at higher concentrations that suppress breathing. Thus, the respiratory alkalosis-dependent eFS are exacerbated by GABAergic excitation. We found that CA VII mRNA is expressed in the human cerebral cortex before the age when febrile seizures (FS) occur in children. Our data indicate that CA VII is a key molecule in age-dependent neuronal pH regulation with consequent effects on generation of FS.


Assuntos
Anidrase Carbônica II/metabolismo , Anidrases Carbônicas/metabolismo , Córtex Cerebral/citologia , Neurônios GABAérgicos/metabolismo , Convulsões Febris/enzimologia , Fatores Etários , Análise de Variância , Animais , Northern Blotting , Western Blotting , Anidrase Carbônica II/genética , Anidrases Carbônicas/genética , Córtex Cerebral/metabolismo , Diazepam/toxicidade , Eletroencefalografia , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Knockout , Ratos , Convulsões Febris/induzido quimicamente , Convulsões Febris/metabolismo
8.
Glia ; 62(4): 608-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24482245

RESUMO

Network activity in the brain is associated with a transient increase in extracellular K(+) concentration. The excess K(+) is removed from the extracellular space by mechanisms proposed to involve Kir4.1-mediated spatial buffering, the Na(+)/K(+)/2Cl(-) cotransporter 1 (NKCC1), and/or Na(+)/K(+)-ATPase activity. Their individual contribution to [K(+)]o management has been of extended controversy. This study aimed, by several complementary approaches, to delineate the transport characteristics of Kir4.1, NKCC1, and Na(+)/K(+)-ATPase and to resolve their involvement in clearance of extracellular K(+) transients. Primary cultures of rat astrocytes displayed robust NKCC1 activity with [K(+)]o increases above basal levels. Increased [K(+)]o produced NKCC1-mediated swelling of cultured astrocytes and NKCC1 could thereby potentially act as a mechanism of K(+) clearance while concomitantly mediate the associated shrinkage of the extracellular space. In rat hippocampal slices, inhibition of NKCC1 failed to affect the rate of K(+) removal from the extracellular space while Kir4.1 enacted its spatial buffering only during a local [K(+)]o increase. In contrast, inhibition of the different isoforms of Na(+)/K(+)-ATPase reduced post-stimulus clearance of K(+) transients. The astrocyte-characteristic α2ß2 subunit composition of Na(+)/K(+)-ATPase, when expressed in Xenopus oocytes, displayed a K(+) affinity and voltage-sensitivity that would render this subunit composition specifically geared for controlling [K(+)]o during neuronal activity. In rat hippocampal slices, simultaneous measurements of the extracellular space volume revealed that neither Kir4.1, NKCC1, nor Na(+)/K(+)-ATPase accounted for the stimulus-induced shrinkage of the extracellular space. Thus, NKCC1 plays no role in activity-induced extracellular K(+) recovery in native hippocampal tissue while Kir4.1 and Na(+)/K(+)-ATPase serve temporally distinct roles.


Assuntos
Hipocampo/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Animais Recém-Nascidos , Bumetanida/farmacologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Líquido Extracelular/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Oócitos , Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Xenopus laevis
9.
Nat Med ; 12(7): 817-23, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16819552

RESUMO

Febrile seizures are frequent during early childhood, and prolonged (complex) febrile seizures are associated with an increased susceptibility to temporal lobe epilepsy. The pathophysiological consequences of febrile seizures have been extensively studied in rat pups exposed to hyperthermia. The mechanisms that trigger these seizures are unknown, however. A rise in brain pH is known to enhance neuronal excitability. Here we show that hyperthermia causes respiratory alkalosis in the immature brain, with a threshold of 0.2-0.3 pH units for seizure induction. Suppressing alkalosis with 5% ambient CO2 abolished seizures within 20 s. CO2 also prevented two long-term effects of hyperthermic seizures in the hippocampus: the upregulation of the I(h) current and the upregulation of CB1 receptor expression. The effects of hyperthermia were closely mimicked by intraperitoneal injection of bicarbonate. Our work indicates a mechanism for triggering hyperthermic seizures and suggests new strategies in the research and therapy of fever-related epileptic syndromes.


Assuntos
Alcalose Respiratória/fisiopatologia , Febre/fisiopatologia , Convulsões Febris/fisiopatologia , Alcalose Respiratória/induzido quimicamente , Animais , Bicarbonatos , Temperatura Corporal , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Dióxido de Carbono/uso terapêutico , Modelos Animais de Doenças , Feminino , Febre/prevenção & controle , Gravidez , Ratos , Ratos Wistar
10.
Brain ; 135(Pt 11): 3311-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23125183

RESUMO

Birth asphyxia is often associated with a high seizure burden that is predictive of poor neurodevelopmental outcome. The mechanisms underlying birth asphyxia seizures are unknown. Using an animal model of birth asphyxia based on 6-day-old rat pups, we have recently shown that the seizure burden is linked to an increase in brain extracellular pH that consists of the recovery from the asphyxia-induced acidosis, and of a subsequent plateau level well above normal extracellular pH. In the present study, two-photon imaging of intracellular pH in neocortical neurons in vivo showed that pH changes also underwent a biphasic acid-alkaline response, resulting in an alkaline plateau level. The mean alkaline overshoot was strongly suppressed by a graded restoration of normocapnia after asphyxia. The parallel post-asphyxia increase in extra- and intracellular pH levels indicated a net loss of acid equivalents from brain tissue that was not attributable to a disruption of the blood-brain barrier, as demonstrated by a lack of increased sodium fluorescein extravasation into the brain, and by the electrophysiological characteristics of the blood-brain barrier. Indeed, electrode recordings of pH in the brain and trunk demonstrated a net efflux of acid equivalents from the brain across the blood-brain barrier, which was abolished by the Na/H exchange inhibitor, N-methyl-isobutyl amiloride. Pharmacological inhibition of Na/H exchange also suppressed the seizure activity associated with the brain-specific alkalosis. Our findings show that the post-asphyxia seizures are attributable to an enhanced Na/H exchange-dependent net extrusion of acid equivalents across the blood-brain barrier and to consequent brain alkalosis. These results suggest targeting of blood-brain barrier-mediated pH regulation as a novel approach in the prevention and therapy of neonatal seizures.


Assuntos
Alcalose/metabolismo , Asfixia Neonatal/tratamento farmacológico , Asfixia Neonatal/metabolismo , Barreira Hematoencefálica/metabolismo , Convulsões/metabolismo , Equilíbrio Ácido-Base/efeitos dos fármacos , Alcalose/complicações , Alcalose/tratamento farmacológico , Alcalose/fisiopatologia , Amilorida/análogos & derivados , Amilorida/farmacologia , Amilorida/uso terapêutico , Animais , Animais Recém-Nascidos , Asfixia Neonatal/complicações , Asfixia Neonatal/fisiopatologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Recém-Nascido , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Convulsões/complicações , Convulsões/tratamento farmacológico , Convulsões/fisiopatologia , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores
11.
Physiol Rep ; 11(15): e15778, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37537145

RESUMO

We recently reported that strong activation of the optogenetic chloride pump, halorhodopsin leads to a secondary redistribution of K+ ions into the cell, through tonically open, "leak" K+ channels. Here we show that this effect is not unique to halorhodopsin but is also seen with activation of another electrogenic ion pump, archaerhodopsin. The two opsins differ however in the size of the rebound rise in extracellular potassium, [K+ ]o , after the end of activation, which is far larger with halorhodopsin than for archaerhodopsin activation. Multiple linear regression modeling indicates that the variance in the postillumination surge in [K+ ]o was explained both by the size of the preceding, illumination-induced drop in [K+ ]o and also by the type of opsin. These data provide additional support for the hypothesis that intense chloride-loading of cells, as occurs naturally following intense bursts of GABAergic synaptic bombardment, or artificially following halorhodopsin activation, is followed by extrusion of both Cl- and K+ coupled together. We discuss this with respect to the pattern of [K+ ]o rise that occurs at the onset of seizure-like events.


Assuntos
Cloretos , Halorrodopsinas , Cloretos/metabolismo , Optogenética , Bombas de Íon
12.
Cell Rep ; 42(11): 113379, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37922309

RESUMO

Neuroinflammation is a salient part of diverse neurological and psychiatric pathologies that associate with neuronal hyperexcitability, but the underlying molecular and cellular mechanisms remain to be identified. Here, we show that peripheral injection of lipopolysaccharide (LPS) renders the dentate gyrus (DG) hyperexcitable to perforant pathway stimulation in vivo and increases the internal spiking propensity of dentate granule cells (DGCs) in vitro 24 h post-injection (hpi). In parallel, LPS leads to a prominent downregulation of chloride extrusion via KCC2 and to the emergence of NKCC1-mediated chloride uptake in DGCs under experimental conditions optimized to detect specific changes in transporter efficacy. These data show that acute neuroinflammation leads to disruption of neuronal chloride regulation, which unequivocally results in a loss of GABAergic inhibition in the DGCs, collapsing the gating function of the DG. The present work provides a mechanistic explanation for neuroinflammation-driven hyperexcitability and consequent cognitive disturbance.


Assuntos
Cloretos , Lipopolissacarídeos , Humanos , Cloretos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Doenças Neuroinflamatórias , Giro Denteado/metabolismo , Neurônios/metabolismo
13.
Glia ; 60(6): 867-74, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22419561

RESUMO

Little is known about the physiological roles of aquaporin-4 (AQP4) in the central nervous system. AQP4 water channels are concentrated in endfeet membranes of astrocytes but also localize to the fine astrocytic processes that abut central synapses. Based on its pattern of expression, we predicted that AQP4 could be involved in controlling water fluxes and changes in extracellular space (ECS) volume that are associated with activation of excitatory pathways. Here, we show that deletion of Aqp4 accentuated the shrinkage of the ECS that occurred in the mouse hippocampal CA1 region during activation of Schaffer collateral/commissural fibers. This effect was found in the stratum radiatum (where perisynaptic astrocytic processes abound) but not in the pyramidal cell layer (where astrocytic processes constitute but a minor volume fraction). For both genotypes the ECS shrinkage was most pronounced in the pyramidal cell layer. Our data attribute a physiological role to AQP4 and indicate that this water channel regulates extracellular volume dynamics in the mammalian brain.


Assuntos
Aquaporina 4/deficiência , Astrócitos/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Potenciais Pós-Sinápticos Excitadores/genética , Espaço Extracelular/genética , Animais , Astrócitos/ultraestrutura , Fenômenos Biofísicos , Região CA1 Hipocampal/ultraestrutura , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Estimulantes Ganglionares/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Técnicas de Patch-Clamp , Fosfopiruvato Hidratase/metabolismo , Células Piramidais/fisiologia , Compostos de Amônio Quaternário/farmacologia , Sinapses/genética , Sinapses/ultraestrutura
14.
Ann Neurol ; 69(3): 493-500, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21337602

RESUMO

OBJECTIVE: The mechanisms whereby birth asphyxia leads to generation of seizures remain unidentified. To study the possible role of brain pH changes, we used a rodent model that mimics the alterations in systemic CO(2) and O(2) levels during and after intrapartum birth asphyxia. METHODS: Neonatal rat pups were exposed for 1 hour to hypercapnia (20% CO(2) in the inhaled gas), hypoxia (9% O(2)), or both (asphyxic conditions). CO(2) levels of 10% and 5% were used for graded restoration of normocapnia. Seizures were characterized behaviorally and utilizing intracranial electroencephalography. Brain pH and oxygen were measured with intracortical microelectrodes, and blood pH, ionized calcium, carbon dioxide, oxygen, and lactate with a clinical device. The impact of the postexposure changes in brain pH on seizure burden was assessed during 2 hours after restoration of normoxia and normocapnia. N-methyl-isobutyl-amiloride, an inhibitor of Na(+) /H(+) exchange, was given intraperitoneally. RESULTS: Whereas hypercapnia or hypoxia alone did not result in an appreciable postexposure seizure burden, recovery from asphyxic conditions was followed by a large seizure burden that was tightly paralleled by a rise in brain pH, but no change in brain oxygenation. By graded restoration of normocapnia after asphyxia, the alkaline shift in brain pH and the seizure burden were strongly suppressed. The seizures were virtually blocked by preapplication of N-methyl-isobutyl-amiloride. INTERPRETATION: Our data indicate that brain alkalosis after recovery from birth asphyxia plays a key role in the triggering of seizures. We question the current practice of rapid restoration of normocapnia in the immediate postasphyxic period, and suggest a novel therapeutic strategy based on graded restoration of normocapnia.


Assuntos
Alcalose/complicações , Asfixia/complicações , Convulsões/etiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Eletroencefalografia , Masculino , Ratos , Ratos Wistar
15.
Proc Natl Acad Sci U S A ; 105(1): 311-6, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18165320

RESUMO

Members of the SLC4 bicarbonate transporter family are involved in solute transport and pH homeostasis. Here we report that disrupting the Slc4a10 gene, which encodes the Na(+)-coupled Cl(-)-HCO(3)(-) exchanger Slc4a10 (NCBE), drastically reduces brain ventricle volume and protects against fatal epileptic seizures in mice. In choroid plexus epithelial cells, Slc4a10 localizes to the basolateral membrane. These cells displayed a diminished recovery from an acid load in KO mice. Slc4a10 also was expressed in neurons. Within the hippocampus, the Slc4a10 protein was abundant in CA3 pyramidal cells. In the CA3 area, propionate-induced intracellular acidification and attenuation of 4-aminopyridine-induced network activity were prolonged in KO mice. Our data indicate that Slc4a10 is involved in the control of neuronal pH and excitability and may contribute to the secretion of cerebrospinal fluid. Hence, Slc4a10 is a promising pharmacological target for the therapy of epilepsy or elevated intracranial pressure.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Líquido Cefalorraquidiano/metabolismo , Antiportadores de Cloreto-Bicarbonato/líquido cefalorraquidiano , Antiportadores de Cloreto-Bicarbonato/fisiologia , Regulação da Expressão Gênica , Mutação , Neurônios/metabolismo , Simportadores de Sódio-Bicarbonato/líquido cefalorraquidiano , Simportadores de Sódio-Bicarbonato/fisiologia , Animais , Comportamento Animal , Transporte Biológico , Antiportadores de Cloreto-Bicarbonato/genética , Deleção de Genes , Concentração de Íons de Hidrogênio , Íons , Aprendizagem , Camundongos , Camundongos Knockout , Modelos Genéticos , Simportadores de Sódio-Bicarbonato/genética
16.
J Neurosci ; 29(21): 6982-8, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19474325

RESUMO

Depolarizing and excitatory GABA actions are thought to be important in cortical development. We show here that GABA has no excitatory action on CA3 pyramidal neurons in hippocampal slices from neonatal NKCC1(-/-) mice that lack the Na-K-2Cl cotransporter isoform 1. Strikingly, NKCC1(-/-) slices generated endogenous network events similar to giant depolarizing potentials (GDPs), but, unlike in wild-type slices, the GDPs were not facilitated by the GABA(A) agonist isoguvacine or blocked by the NKCC1 inhibitor bumetanide. The developmental upregulation of the K-Cl cotransporter 2 (KCC2) was unperturbed, whereas the pharmacologically isolated glutamatergic network activity and the intrinsic excitability of CA3 pyramidal neurons were enhanced in the NKCC1(-/-) hippocampus. Hence, developmental expression of KCC2, unsilencing of AMPA-type synapses, and early network events can take place in the absence of excitatory GABAergic signaling in the neonatal hippocampus. Furthermore, we show that genetic as well as pharmacologically induced loss of NKCC1-dependent excitatory actions of GABA results in a dramatic compensatory increase in the intrinsic excitability of glutamatergic neurons, pointing to powerful homeostatic regulation of neuronal activity in the developing hippocampal circuitry.


Assuntos
Potenciais de Ação/genética , Hipocampo/citologia , Células Piramidais/fisiologia , Simportadores de Cloreto de Sódio-Potássio/deficiência , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Benzodiazepinas/farmacologia , Biofísica , Cálcio/metabolismo , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Quinoxalinas/farmacologia , Membro 2 da Família 12 de Carreador de Soluto , Simportadores/genética , Simportadores/metabolismo , Regulação para Cima/fisiologia , Ácido gama-Aminobutírico/farmacologia , Cotransportadores de K e Cl-
17.
J Physiol ; 588(Pt 9): 1527-40, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20211979

RESUMO

GABAergic excitatory [K(+)](o) transients can be readily evoked in the mature rat hippocampus by intense activation of GABA(A) receptors (GABA(A)Rs). Here we show that these [K(+)](o) responses induced by high-frequency stimulation or GABA(A) agonist application are generated by the neuronal K(+)-Cl() cotransporter KCC2 and that the transporter-mediated KCl extrusion is critically dependent on the bicarbonate-driven accumulation of Cl() in pyramidal neurons. The mechanism underlying GABAergic [K(+)](o) transients was studied in CA1 stratum pyramidale using intracellular sharp microelectrodes and extracellular ion-sensitive microelectrodes. The evoked [K(+)](o) transients, as well as the associated afterdischarges, were strongly suppressed by 0.5-1 mm furosemide, a KCl cotransport inhibitor. Importantly, the GABA(A)R-mediated intrapyramidal accumulation of Cl(), as measured by monitoring the reversal potential of fused IPSPs, was unaffected by the drug. It was further confirmed that the reduction in the [K(+)](o) transients was not due to effects of furosemide on the Na(+)-dependent K(+)-Cl() cotransporter NKCC1 or on intraneuronal carbonic anhydrase activity. Blocking potassium channels by Ba(2+) enhanced [K(+)](o) transients whereas pyramidal cell depolarizations were attenuated in further agreement with a lack of contribution by channel-mediated K(+) efflux. The key role of the GABA(A)R channel-mediated anion fluxes in the generation of the [K(+)](o) transients was examined in experiments where bicarbonate was replaced with formate. This anion substitution had no significant effect on the rate of Cl() accumulation, [K(+)](o) response or afterdischarges. Our findings reveal a novel excitatory mode of action of KCC2 that can have substantial implications for the role of GABAergic transmission during ictal epileptiform activity.


Assuntos
Hipocampo/fisiologia , Simportadores/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Anticonvulsivantes/farmacologia , Bário/farmacologia , Bicarbonatos/metabolismo , Região CA1 Hipocampal/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Cloretos/metabolismo , Diuréticos/farmacologia , Estimulação Elétrica , Eletrofisiologia , Epilepsia/fisiopatologia , Furosemida/farmacologia , Agonistas GABAérgicos/farmacologia , Hipocampo/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Ácidos Isonicotínicos/farmacologia , Microeletrodos , Potássio/metabolismo , Potássio/farmacologia , Células Piramidais/metabolismo , Ratos , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/fisiologia , Espectrometria de Fluorescência , Simportadores/efeitos dos fármacos , Cotransportadores de K e Cl-
18.
Acta Physiol (Oxf) ; 229(3): e13467, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32174009

RESUMO

AIM: To study brain-sparing physiological responses in a rodent model of birth asphyxia which reproduces the asphyxia-defining systemic hypoxia and hypercapnia. METHODS: Steady or intermittent asphyxia was induced for 15-45 minutes in anaesthetized 6- and 11-days old rats and neonatal guinea pigs using gases containing 5% or 9% O2 plus 20% CO2 (in N2 ). Hypoxia and hypercapnia were induced with low O2 and high CO2 respectively. Oxygen partial pressure (PO2 ) and pH were measured with microsensors within the brain and subcutaneous ("body") tissue. Blood lactate was measured after asphyxia. RESULTS: Brain and body PO2 fell to apparent zero with little recovery during 5% O2 asphyxia and 5% or 9% O2 hypoxia, and increased more than twofold during 20% CO2 hypercapnia. Unlike body PO2 , brain PO2 recovered rapidly to control after a transient fall (rat), or was slightly higher than control (guinea pig) during 9% O2 asphyxia. Asphyxia (5% O2 ) induced a respiratory acidosis paralleled by a progressive metabolic (lact)acidosis that was much smaller within than outside the brain. Hypoxia (5% O2 ) produced a brain-confined alkalosis. Hypercapnia outlasting asphyxia suppressed pH recovery and prolonged the post-asphyxia PO2 overshoot. All pH changes were accompanied by consistent shifts in the blood-brain barrier potential. CONCLUSION: Regardless of brain maturation stage, hypercapnia can restore brain PO2 and protect the brain against metabolic acidosis despite compromised oxygen availability during asphyxia. This effect extends to the recovery phase if normocapnia is restored slowly, and it is absent during hypoxia, demonstrating that exposure to hypoxia does not mimic asphyxia.


Assuntos
Asfixia Neonatal , Encéfalo/fisiologia , Oxigênio/fisiologia , Animais , Modelos Animais de Doenças , Cobaias , Humanos , Concentração de Íons de Hidrogênio , Hipercapnia , Hipóxia , Recém-Nascido , Ratos
20.
PLoS One ; 15(5): e0233851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470084

RESUMO

Brain interstitial pH (pHbrain) alterations play an important role in the mechanisms of neuronal injury in neonatal hypoxic-ischemic encephalopathy (HIE) induced by perinatal asphyxia. The newborn pig is an established large animal model to study HIE, however, only limited information on pHbrain alterations is available in this species and it is restricted to experimental perinatal asphyxia (PA) and the immediate reventilation. Therefore, we sought to determine pHbrain over the first 24h of HIE development in piglets. Anaesthetized, ventilated newborn pigs (n = 16) were instrumented to control major physiological parameters. pHbrain was determined in the parietal cortex using a pH-selective microelectrode. PA was induced by ventilation with a gas mixture containing 6%O2-20%CO2 for 20 min, followed by reventilation with air for 24h, then the brains were processed for histopathology assessment. The core temperature was maintained unchanged during PA (38.4±0.1 vs 38.3±0.1°C, at baseline versus the end of PA, respectively; mean±SEM). In the arterial blood, PA resulted in severe hypoxia (PaO2: 65±4 vs 23±1*mmHg, *p<0.05) as well as acidosis (pHa: 7.53±0.03 vs 6.79±0.02*) that is consistent with the observed hypercapnia (PaCO2: 37±3 vs 160±6*mmHg) and lactacidemia (1.6±0.3 vs 10.3±0.7*mmol/L). Meanwhile, pHbrain decreased progressively from 7.21±0.03 to 5.94±0.11*. Reventilation restored pHa, blood gases and metabolites within 4 hours except for PaCO2 that remained slightly elevated. pHbrain returned to 7.0 in 29.4±5.5 min and then recovered to its baseline level without showing secondary alterations during the 24 h observation period. Neuropathological assessment also confirmed neuronal injury. In conclusion, in spite of the severe acidosis and alterations in blood gases during experimental PA, pHbrain recovered rapidly and notably, there was no post-asphyxia hypocapnia that is commonly observed in many HIE babies. Thus, the neuronal injury in our piglet model is not associated with abnormal pHbrain or low PaCO2 over the first 24 h after PA.


Assuntos
Encéfalo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Acidose/sangue , Acidose/complicações , Acidose/metabolismo , Acidose/fisiopatologia , Animais , Animais Recém-Nascidos , Asfixia Neonatal/sangue , Asfixia Neonatal/metabolismo , Asfixia Neonatal/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Hemodinâmica , Concentração de Íons de Hidrogênio , Hipercapnia/sangue , Hipercapnia/complicações , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Hipóxia-Isquemia Encefálica/sangue , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/fisiopatologia , Masculino , Neurônios/patologia , Oxigênio/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA