Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
IUBMB Life ; 75(1): 66-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35557488

RESUMO

In the present study, low concentrations of the very mild detergent n-dodecyl-α-d-maltoside in conjunction with sucrose gradient ultracentrifugation were used to prepare fucoxanthin chlorophyll protein (FCP) complexes of the centric diatom Thalassiosira pseudonana. Two main FCP fractions were observed in the sucrose gradients, one in the upper part and one at high sucrose concentrations in the lower part of the gradient. The first fraction was dominated by the 18 kDa FCP protein band in SDS-gels. Since this fraction also contained other protein bands, it was designated as fraction enriched in FCP-A complex. The second fraction contained mainly the 21 kDa FCP band, which is typical for the FCP-B complex. Determination of the lipid composition showed that both FCP fractions contained monogalactosyl diacylglycerol as the main lipid followed by the second galactolipid of the thylakoid membrane, namely digalactosyl diacylglycerol. The negatively charged lipids sulfoquinovosyl diacylglycerol and phosphatidyl glycerol were also present in both fractions in pronounced concentrations. With respect to the pigment composition, the fraction enriched in FCP-A contained a higher amount of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (Dt), whereas the FCP-B fraction was characterized by a lower ratio of xanthophyll cycle pigments to the light-harvesting pigment fucoxanthin. Protein analysis by mass spectrometry revealed that in both FCP fractions the xanthophyll cycle enzyme diadinoxanthin de-epoxidase (DDE) was present. In addition, the analysis showed an enrichment of DDE in the fraction enriched in FCP-A but only a very low amount of DDE in the FCP-B fraction. In-vitro de-epoxidation assays, employing the isolated FCP complexes, were characterized by an inefficient conversion of DD to Dt. However, in line with the heterogeneous DDE distribution, the fraction enriched in FCP-A showed a more pronounced DD de-epoxidation compared with the FCP-B.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Diglicerídeos/metabolismo , Xantofilas
2.
Anal Chem ; 94(31): 10930-10941, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35904512

RESUMO

The inherent poor sampling of fragment ions in time-of-flight mass analyzers was recently improved for data-dependent acquisition (DDA) by considering their drift times in traveling wave ion mobility spectrometry (TWIMS). Here, we extend this TWIMS-DDA approach to the data-independent acquisition (DIA) mode MSE to improve the signal intensities of fragment ions by providing improved ion beam sampling efficiency, which we termed therefore signal-enhanced MSE (SEMSE). The theoretical expectation that SEMSE improves the number of identified peptides, the number of quantifiable peptides, and the lower limit of quantitation in wideband DIA was evaluated on an electrospray ionisation-ion mobility spectrometry-quadrupole-time-of-flight-MS (ESI-IMS-Q-TOF-MS) (Synapt G2-Si) in comparison to five established TWIMS-DDA and TWIMS-MSE methods with respect to the number of peptide identifications, the spectral quality of supporting peptide spectra matches, and (most importantly) fragment ion signal sensitivity. A comparison of the fragment signals clearly indicated that SEMSE provides 6.8- to 11.5-fold larger peak areas than established MSE techniques. While this clearly shows the advantages of SEMSE, the inherent limitations of the current software tools do not allow using all benefits in routine analyses. As the simultaneous fragmentation of co-eluting peptides limited peptide identification, DDA and MSE data sets were integrated using Skyline.


Assuntos
Espectrometria de Mobilidade Iônica , Peptídeos , Espectrometria de Mobilidade Iônica/métodos , Íons , Fragmentos de Peptídeos , Peptídeos/química , Espectrometria de Massas em Tandem/métodos
3.
Virol J ; 19(1): 50, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305688

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered the worldwide coronavirus disease 2019 (COVID-19) pandemic. Serological assays for the detection of SARS-CoV-2 infections are important to understand the immune response in patients and to obtain epidemiological data about the number of infected people, especially to identify asymptomatic persons not aware of a past infection. METHODS: We recombinantly produced SARS-CoV-2 nucleocapsid (N)-protein in Escherichia coli. We used the purified protein to develop an indirect enzyme-linked immunosorbent assay (ELISA) for the detection of SARS-CoV-2 specific antibodies. This ELISA method was optimized and validated with serum samples collected from 113 patients with RT-PCR-confirmed SARS-CoV-2 infections including hospitalized COVID-19 patients and 1500 control sera mostly collected before 2015 with different clinical background. RESULTS: The optimized N-protein-ELISA provided a sensitivity of 89.7% (n = 68) for samples collected from patients with confirmed SARS-CoV-2 infections and mild to severe symptoms more than 14 days after symptom onset or a positive PCR test. The antibody levels remained low for serum samples collected in the first six days (n = 23) and increased in the second week (n = 22) post symptom onset or PCR confirmation. At this early phase, the ELISA provided a sensitivity of 39.1% and 86.4%, respectively, reflecting the time of an IgG immune response against pathogens. The assay specificity was 99.3% (n = 1500; 95% CI 0.995-0.999). Serum samples from persons with confirmed antibody titers against human immunodeficiency viruses 1/2, parvovirus B19, hepatitis A/B virus, cytomegalovirus, Epstein Barr virus, and herpes simplex virus were tested negative. CONCLUSIONS: We conclude that the N-protein-based ELISA developed here is well suited for the sensitive and specific serological detection of SARS-CoV-2 specific IgG antibodies in human serum for symptomatic infections. It may also prove useful to identify previous SARS-CoV-2 infections in vaccinated people, as all currently approved vaccines rely on the SARS-CoV-2 spike (S-) protein.


Assuntos
COVID-19 , Infecções por Vírus Epstein-Barr , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , Herpesvirus Humano 4 , Humanos , Proteínas do Nucleocapsídeo , SARS-CoV-2
4.
Arch Toxicol ; 95(9): 3001-3013, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34241659

RESUMO

The liver is one of the most sexually dimorphic organs. The hepatic metabolic pathways that are subject to sexual dimorphism include xenobiotic, amino acid and lipid metabolism. Non-alcoholic fatty liver disease and hepatocellular carcinoma are among diseases with sex-dependent prevalence, progression and outcome. Although male and female livers differ in their abilities to metabolize foreign compounds, including drugs, sex-dependent treatment and pharmacological dynamics are rarely applied in all relevant cases. Therefore, it is important to consider hepatic sexual dimorphism when developing new treatment strategies and to understand the underlying mechanisms in model systems. We isolated primary hepatocytes from male and female C57BL6/N mice and examined the sex-dependent transcriptome, proteome and extracellular metabolome parameters in the course of culturing them for 96 h. The sex-specific gene expression of the general xenobiotic pathway altered and the female-specific expression of Cyp2b13 and Cyp2b9 was significantly reduced during culture. Sex-dependent differences of several signaling pathways increased, including genes related to serotonin and melatonin degradation. Furthermore, the ratios of male and female gene expression were inversed for other pathways, such as amino acid degradation, beta-oxidation, androgen signaling and hepatic steatosis. Because the primary hepatocytes were cultivated without the influence of known regulators of sexual dimorphism, these results suggest currently unknown modulatory mechanisms of sexual dimorphism in vitro. The large sex-dependent differences in the regulation and dynamics of drug metabolism observed during cultivation can have an immense influence on the evaluation of pharmacodynamic processes when conducting initial preclinical trials to investigate potential new drugs.


Assuntos
Hepatócitos/metabolismo , Metaboloma/fisiologia , Proteoma/fisiologia , Transcriptoma/fisiologia , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino , Melatonina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Serotonina/metabolismo , Caracteres Sexuais , Fatores Sexuais , Transdução de Sinais/fisiologia , Esteroide Hidroxilases/genética
5.
BMC Plant Biol ; 20(1): 456, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023504

RESUMO

BACKGROUND: Although our knowledge about diatom photosynthesis has made huge progress over the last years, many aspects about their photosynthetic apparatus are still enigmatic. According to published data, the spatial organization as well as the biochemical composition of diatom thylakoid membranes is significantly different from that of higher plants. RESULTS: In this study the pigment protein complexes of the diatom Thalassiosira pseudonana were isolated by anion exchange chromatography. A step gradient was used for the elution process, yielding five well-separated pigment protein fractions which were characterized in detail. The isolation of photosystem (PS) core complex fractions, which contained fucoxanthin chlorophyll proteins (FCPs), enabled the differentiation between different FCP complexes: FCP complexes which were more closely associated with the PSI and PSII core complexes and FCP complexes which built-up the peripheral antenna. Analysis by mass spectrometry showed that the FCP complexes associated with the PSI and PSII core complexes contained various Lhcf proteins, including Lhcf1, Lhcf2, Lhcf4, Lhcf5, Lhcf6, Lhcf8 and Lhcf9 proteins, while the peripheral FCP complexes were exclusively composed of Lhcf8 and Lhcf9. Lhcr proteins, namely Lhcr1, Lhcr3 and Lhcr14, were identified in fractions containing subunits of the PSI core complex. Lhcx1, Lhcx2 and Lhcx5 proteins co-eluted with PSII protein subunits. The first fraction contained an additional Lhcx protein, Lhcx6_1, and was furthermore characterized by high concentrations of photoprotective xanthophyll cycle pigments. CONCLUSION: The results of the present study corroborate existing data, like the observation of a PSI-specific antenna complex in diatoms composed of Lhcr proteins. They complement other data, like e.g. on the protein composition of the 21 kDa FCP band or the Lhcf composition of FCPa and FCPb complexes. They also provide interesting new information, like the presence of the enzyme diadinoxanthin de-epoxidase in the Lhcx-containing PSII fraction, which might be relevant for the process of non-photochemical quenching. Finally, the high negative charge of the main FCP fraction may play a role in the organization and structure of the native diatom thylakoid membrane. Thus, the results present an important contribution to our understanding of the complex nature of the diatom antenna system.


Assuntos
Proteínas de Ligação à Clorofila/metabolismo , Diatomáceas/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Pigmentos Biológicos/isolamento & purificação , Proteínas de Ligação à Clorofila/genética , Cromatografia por Troca Iônica , Diatomáceas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética
6.
Chembiochem ; 21(18): 2628-2634, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32293093

RESUMO

Proline-rich antimicrobial peptides expressed in insects are primarily active against Enterobacteriaceae. Mechanistically, they target the bacterial (70S) ribosome after partially transporter-based cellular uptake, as revealed for Api137 and Onc112 on Escherichia coli. Following molecular modeling indicating that the Onc112 contact site is conserved among the ribosomes of high-priority pathogens, the ribosome binding of Api137 and Onc112 was studied. The dissociation constants (Kd ) of Onc112 were ∼75 nmol/L for Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii, 36 nmol/L for Pseudomonas aeruginosa, and 102 nmol/L for Staphylococcus aureus, thus indicating a very promising lead structure for developing broad-spectrum antibiotics. Api137 bound weaker with Kd values ranging from 155 nmol/L to 13 µmol/L. For most bacteria, the antibacterial activities were lower than predicted from the Kd values, which was only partially explained by their ability to enter bacterial cells. Other factors limiting the activity expected from the ribosome binding might be off-target binding.


Assuntos
Antibacterianos/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Ribossomos/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Sítios de Ligação/efeitos dos fármacos , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Ribossomos/metabolismo , Staphylococcus aureus/efeitos dos fármacos
7.
BMC Microbiol ; 19(1): 43, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777007

RESUMO

BACKGROUND: Rodentibacter (R.) pneumotropicus colonizes the respiratory and urogenital tracts of laboratory mice with a reported moderate serological prevalence from 4 to 13%. Thus, regular tests to identify this pathogen in mice are recommended for animal facilities. However, a recent study indicated that current serological assays are partly insensitive, as C57BL/6 and BALB/c mice infected with R. pneumotropicus were incorrectly screened as seronegative. RESULTS: Here, we report a systematic analysis of protein and lipopolysaccharides antigens by immunoblot and ELISA that allowed establishing a sensitive test system able to differentiate between R. pneumotropicus and the closely related species R. heylii. Furthermore, the main immunogen, designated as 'characteristic antigen for Rodentibacter of laboratory origin 1' (CARLO-1), was identified by two-dimensional gel electrophoresis followed by immunoblot and tandem mass spectrometry in a preparation of outer membrane proteins. An indirect ELISA relying on the recombinantly expressed protein provided high sensitivity, specificity, and selectivity. The corresponding carlo1 gene was highly conserved (> 97%) among 21 isolates of R. pneumotropicus and R. heylii. CONCLUSION: The newly identified protein CARLO-1 is well suited for the sensitive and specific serological detection of Rodentibacter infections in mice. Indirect differentiation of R. pneumotropicus and R. heylii infections may be possible using an ELISA based on a whole-cell antigen preparation. All four established ELISA systems using a whole-cell preparation, lipopolysaccharides, outer-membrane proteins and protein CARLO-1 as antigen, respectively, outperformed a commercial ELISA in terms of sensitivity.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Ensaio de Imunoadsorção Enzimática , Infecções por Pasteurellaceae/diagnóstico , Infecções por Pasteurellaceae/veterinária , Pasteurellaceae/imunologia , Animais , Feminino , Immunoblotting , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pasteurellaceae/patogenicidade , Infecções por Pasteurellaceae/imunologia , Sensibilidade e Especificidade
8.
Virol J ; 15(1): 114, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30049287

RESUMO

BACKGROUND: Reovirus type-3 infections cause severe pathologies in young mice and thus influence animal experiments in many ways. Therefore, the Federation of Laboratory Animal Science Associations (FELASA) recommends an annual screening in laboratory mice as part of a thorough health monitoring program. Based on the high protein sequence homology among the different reovirus serotypes, immunofluorescence antibody assay and other indirect methods relying on the whole virus are presumably cross-reactive to antibodies triggered by mammalian orthoreovirus infections independent of the serotype. METHODS: The serotype-specific protein σ-1 was expressed in Escherichia coli with an N-terminal Strep-tag and a C-terminal His-tag. The purified Strep-rσ-1-His-construct was used to develop an indirect ELISA by testing defined positive and negative sera obtained by experimental infection of mice as well as field sera. RESULTS: The Strep-rσ-1-His-ELISA provided high sensitivity and specificity during validation. Notably, a high selectivity was also observed for sera positively tested for other relevant FELASA-listed pathogens. Screening of field samples indicated that a commercial reovirus type-3-based ELISA might be cross-reactive to other murine reovirus serotypes and thus produces false-positive results. CONCLUSIONS: The prevalence of reovirus type-3 might be overestimated in German animal facilities and most likely in other countries as well. The occurrence of other reovirus serotypes, however, raises the question if murine health monitoring programs should be extended to these pathogens.


Assuntos
Orthoreovirus Mamífero 3/classificação , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia , Proteínas do Core Viral/imunologia , Animais , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Hemaglutinação , Testes de Hemaglutinação , Camundongos , Infecções por Reoviridae/diagnóstico , Sorogrupo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Proteínas do Core Viral/genética
9.
Planta ; 245(4): 793-806, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28025675

RESUMO

MAIN CONCLUSION: A special domain of the thylakoid membrane of higher plants has been isolated which carries out the de-epoxidation of the xanthophyll cycle pigment violaxanthin to zeaxanthin. Recent models indicate that in the chloroplast of higher plants, the violaxanthin (V) cycle takes place within specialized domains in the thylakoid membrane. Here, we describe a new procedure to directly isolate such a domain in functional state. The procedure consists of a thylakoid membrane isolation at a pH value of 5.2 which realizes the binding of the enzyme V de-epoxidase (VDE) to the membrane throughout the preparation process. Isolated thylakoid membranes are then solubilized with the very mild detergent n-dodecyl α-D-maltoside and the pigment-protein complexes are separated by sucrose gradient ultracentrifugation. The upper main fraction of the sucrose gradient represents a V cycle domain which consists of the major light-harvesting complex of photosystem II (LHCII), a special lipid composition with an enrichment of the galactolipid monogalactosyldiacylglycerol (MGDG) and the VDE. The domain is isolated in functional state as evidenced by the ability to convert the LHCII-associated V to zeaxanthin. The direct isolation of a V cycle domain proves the most important hypotheses concerning the de-epoxidation reaction in intact thylakoid membranes. It shows that the VDE binds to the thylakoid membrane at low pH values of the thylakoid lumen, that it binds to membrane regions enriched in LHCII, and that the domain contains high amounts of MGDG. The last point is in line with the importance of the galactolipid for V solubilisation and, by providing inverted hexagonal lipid structures, for VDE activity.


Assuntos
Tilacoides/fisiologia , Western Blotting , Centrifugação com Gradiente de Concentração , Eletroforese em Gel de Poliacrilamida , Oxirredutases/metabolismo , Folhas de Planta/metabolismo , Espectrometria de Fluorescência , Spinacia oleracea/metabolismo , Tilacoides/química , Xantofilas/isolamento & purificação , Xantofilas/metabolismo , Xantofilas/fisiologia , Zeaxantinas/metabolismo
10.
J Proteome Res ; 15(8): 2607-17, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27405093

RESUMO

Bacteria have acquired resistance mechanisms to overcome antibiotic treatments, triggering major concerns about the return of epidemic infections. Antimicrobial peptides identified in insects, animals, and plants represent a huge pool of promising lead structures that can be further developed for medical applications. Short proline-rich antimicrobial peptides (PrAMPs) have gained much attention due to their clinically interesting activity spectrum, serum protease stability, efficacy in murine infection models, and low adverse effects. Here we induced resistances by incubating Escherichia coli with increasing concentrations of apidaecin 1b, a PrAMP isolated from honeybees, and quantitatively evaluated the proteomes between wild-type and resistant strains. Surprisingly, 2D differential gel electrophoresis did not reveal differences, indicating that the expression levels of dominant proteins were very similar. Reversed-phase chromatography coupled online to a mass spectrometer identified 2131 proteins in the soluble fraction (cytosolic fraction) and 1296 proteins in the nonsolubilized pellet (membrane fraction). Overall 29 proteins showed a statistically significant upregulation in the resistant E. coli strain, whereas 18 proteins were downregulated. Interestingly, periplasmic chaperone FimC, fimbrial protein FimA, and mannose-binding domain protein FimH, which are part of the fimbrial complex, were not detected in the resistant strain that was also unable to form biofilms. Furthermore, the expression of a few other proteins known as virulence factors was downregulated. Additionally, the expression level of isochorismatase hydrolase (YcaC) decreased in the membrane fraction of the resistant strain to 35%, and the corresponding knockout mutant of E. coli BW25113 was eight times less susceptible to apidaecin 1b and the related designer peptide Api88.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Farmacorresistência Bacteriana , Escherichia coli/química , Proteoma/efeitos dos fármacos , Proteômica/métodos , Animais , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Abelhas/química , Cromatografia em Gel , Cromatografia de Fase Reversa , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Espectrometria de Massas
11.
J Proteome Res ; 14(8): 3274-83, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26196380

RESUMO

Gene-encoded antimicrobial peptides (AMPs) kill bacteria very efficiently by either lytic mechanisms or inhibition of specific bacterial targets. Proline-rich AMPs (PrAMPs), for example, produced in insects and mammals rely on the second mechanism. They bind to the 70 kDa bacterial heat shock protein DnaK and the 60 kDa chaperonin GroEL and interfere with protein folding, but this does not explain their strong bactericidal effects. Thus, we looked for further binding partners of apidaecin 1b, originally identified in honey bees, and two rationally optimized analogues (Api88 and Api137). Because affinity chromatography using Api88 as an immobilized ligand enriched only a few proteins at low levels besides DnaK, we synthesized Api88 analogues substituting Tyr7 with p-benzoyl-phenylalanine (Bpa), which can cross-link the peptide to binding partners after UV irradiation. Escherichia coli was incubated with biotinylated Api88 Tyr7Bpa or the corresponding all-d-peptide, irradiated, and lysed. The protein extract was enriched by streptavidin, separated by SDS-PAGE, digested with trypsin, and analyzed by nanoRP-UPLC-ESI-QqTOF-MS/MS. Among the 41 proteins identified, 34 were detected only in the l-Api88 Tyr7Bpa sample, including five 70S ribosomal proteins, DNA-directed RNA polymerase, and pyruvate dehydrogenase, indicating that PrAMPs might interfere with protein translation and energy metabolism.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Insetos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Benzofenonas/metabolismo , Western Blotting , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão/métodos , Reagentes de Ligações Cruzadas/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Insetos/genética , Proteínas de Insetos/farmacologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Fenilalanina/análogos & derivados , Fenilalanina/genética , Fenilalanina/metabolismo , Ligação Proteica/efeitos da radiação , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Tirosina/genética , Tirosina/metabolismo , Raios Ultravioleta
12.
Angew Chem Int Ed Engl ; 53(45): 12236-9, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25220491

RESUMO

Proline-rich antimicrobial peptides (PrAMPs) have been investigated and optimized by several research groups and companies as promising lead compounds to treat systemic infections caused by Gram-negative bacteria. PrAMPs, such as apidaecins and oncocins, enter the bacteria and kill them apparently through inhibition of specific targets without a lytic effect on the membranes. Both apidaecins and oncocins were shown to bind with nanomolar dissociation constants to the 70S ribosome. In apidaecins, at least the two C-terminal residues (Arg17 and Leu18) interact strongly with the 70S ribosome, whereas residues Lys3, Tyr6, Leu7, and Arg11 are the major interaction sites in oncocins. Oncocins inhibited protein biosynthesis very efficiently in vitro with half maximal inhibitory concentrations (IC50 values) of 150 to 240 nmol L(-1). The chaperone DnaK is most likely not the main target of PrAMPs but it binds them with lower affinity.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Prolina/análise , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/genética , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Insetos , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização por Electrospray
13.
Biology (Basel) ; 13(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38666819

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human cells by first attaching to the ACE-2 receptor via its receptor-binding domain (RBD) in the spike protein. Here, we report the influence of N-glycosylation sites of the RBD and the membrane (M) protein on IgG antibody binding in serum samples from patients infected with the original SARS-CoV-2 strain in Germany. The RBDs of the wildtype, alpha, beta, gamma, and kappa variants expressed in HEK293S GnTI- cells were all N-glycosylated at Asn331, Asn334, Asn343, and Asn360 or Asn370, whereas the M-protein was glycosylated at Asn5. An ELISA using a coated RBD and probed with anti-RBD IgG antibodies gave a sensitivity of 96.3% and a specificity of 100% for the wildtype RBD, while the sensitivity decreased by 5% to 10% for the variants of concern, essentially in the order of appearance. Deglycosylation of the wildtype RBD strongly reduced antibody recognition by ~20%, considering the mean of the absorbances recorded for the ELISA. This effect was even stronger for the unglycosylated RBD expressed in Escherichia coli, suggesting structural changes affecting epitope recognition. Interestingly, the N-glycosylated M-protein expressed in HEK293S GnTI- cells gave good sensitivity (95%), which also decreased to 65% after deglycosylation, and selectivity (100%). In conclusion, N-glycosylation of the M-protein, the RBD, and most likely the spike protein are important for proper antibody binding and immunological assays, whereas the type of N-glycosylation is less relevant.

14.
Front Immunol ; 15: 1347164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487534

RESUMO

Introduction: Severe equine asthma (SEA) is a common chronic disease of adult horses with characteristic recurrent airway obstruction and similarities to neutrophilic asthma in humans. As an extrinsic stimulus, hay dust exposure is a major risk factor and induces acute exacerbation in susceptible horses. However, single inducing agents of SEA have hardly been identified on a molecular basis. Aspergillus fumigatus (A. fumigatus) is a common mold species in hay and has been described as a major provoking agent of SEA. Methods: Aiming to identify disease-relevant antigens, we analyzed A. fumigatus using an immunoproteomics approach on two-dimensional immunoblots of A. fumigatus protein probed with serum from environmentally matched asthmatic and healthy horses (n=5 pairs). A. fumigatus binding serum immunoglobulins (Pan-Ig), and the isotypes IgG4/7 and IgG3/5 were quantified for each protein spot and then compared between asthmatic and healthy horses. Results and discussion: For 21 out of 289 spots serum immunoglobulin (Ig) binding was different between the two groups for Pan-Ig or the isotypes. If differences were detected, Pan-Ig and IgG4/7 binding to the proteins were lower, while IgG3/5 binding was higher in asthmatic than healthy horse sera. Proteins were extracted from the 21 spots of interest and analyzed by liquid chromatography mass spectrometry. Eight prioritized proteins (candidate antigens) were expressed as recombinant proteins. Some of these have been previously described as major or minor A. fumigatus allergens, alongside other proteins, most with hydrolase activity. Recombinant candidate antigens were tested on 1D immunoblots to confirm their relevance as antigens by serum antibody binding. Four proteins (beta-hexosaminidase, class II aldolase/adducin domain protein, glucoamylase, peptide hydrolase B0XX53) showed different antibody binding characteristics between asthmatic and healthy horses and are likely relevant antigens in SEA. Their identification can provide the basis for innovative diagnostics, prevention, or therapeutic approaches. Additionally, a more profound understanding of SEA and its potential underlying mechanisms can be established. Elevated serum IgG3/5 antibodies correlate with T helper cell 2 responses in other equine pathologies, and the recombinant SEA antigens developed here can become instrumental in analyzing the involvement of SEA-specific T cell responses and Ig responses in future studies.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Adulto , Animais , Cavalos , Aspergillus fumigatus , Asma/veterinária , Antígenos de Fungos , Imunoglobulina G
15.
Adv Healthc Mater ; 12(11): e2202368, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631971

RESUMO

The favorable properties of antimicrobial peptides (AMPs) to rapidly kill pathogens are often limited by unfavorable pharmacokinetics due to fast degradation and renal clearance rates. Here, a prodrug strategy linking proline-rich AMP Onc72 to polyethylene glycol (PEGs) with average molecular weights of 5 and 20 kDa via a peptide linker containing a protease cleavage site is tested for the first time in vivo. Onc72 is released from these 5k- and 20k-prodrugs in mouse serum with half-life times (t1/2 ) of 8 and 14 h, respectively. Importantly, PEGylation protects Onc72 from proteolytic degradation providing a prolonged release of Onc72, balancing the degradation of free Onc72, and leading to relatively stable Onc72 concentrations and high antibacterial activities. The prodrugs are not hemolytic on human erythrocytes and show only slight cytotoxic effects on human cell lines indicating promising safety margins. When administered subcutaneously to female CD-1 mice, the prodrugs elimination t1/2 are 66 min and ≈5.5 h, respectively, compared to 43 min of free Onc72. The maximal Onc72 plasma levels are obtained ≈1 and ≈8 h postadministration, respectively. In conclusion, the prodrugs provide extended elimination t1/2 and a constant release of Onc72 in mice, potentially limiting adverse effects and increasing efficacy.


Assuntos
Antineoplásicos , Pró-Fármacos , Camundongos , Feminino , Humanos , Animais , Pró-Fármacos/química , Peptídeos , Polietilenoglicóis/química , Antibacterianos
16.
J Am Soc Mass Spectrom ; 34(2): 161-170, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630296

RESUMO

We investigate collision-induced dissociation (CID) of [Mo6X14]2- (X = Cl, Br, I) and the reactivity of fragment ions of these precursors with background gases. Ion mobility measurements and theoretical calculations provide structural information for some of the observed ions. Sequential losses of MoX2 units dominate the dissociation pathways of [Mo6Cl14]2-. Meanwhile, loss of X radicals is the main channel for X = Br and I. Ion mobility measurements and computational investigations indicate minor structural changes in the octahedral Mo6 unit for [Mo6Im]- (m = 6-13) fragments. We observe that mass spectra obtained using CID substantially vary among mass spectrometers: Specifically, ions with molecular formula [Mo6Xm(O2)n]- (X = Br and I) are observed as dominant species produced through reactions with O2 in several mass spectrometers, but also adduct free fragment ions were observed in other instruments, depending on the background conditions. Ion-trap fragmentation combined with theoretical investigations indicates that spontaneous losses of X radicals occur upon binding of O2 to [Mo6Im]- fragments (m ≤ 12). Theoretical investigations indicate that both oxygen atoms are bound to the vacant sites of the Mo6 units. This study opens up a new vista to generate and study a large variety of hexanuclear Mo6Xm(O2)n anions.

17.
Front Immunol ; 14: 1293684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162673

RESUMO

Introduction: Severe equine asthma (SEA) is a common, chronic respiratory disease of horses characterized by hyperreactivity to hay dust which has many similarities to severe neutrophilic asthma in humans. SEA-provoking antigens have not been comprehensively characterized, but molds and mites have been suggested as relevant sources. Here, we identified relevant antigen candidates using immunoproteomics with IgG isotype-binding analyses. Methods: Proteins from Dermatophagoides pteronyssinus (Der p) were separated by two-dimensional gel electrophoresis followed by immunoblotting (2D immunoblots) resulting in a characteristic pattern of 440 spots. After serum incubation, antibody (Ig)-binding of all Ig (Pan-Ig) and IgG isotypes (type-2-associated IgG3/5, type-1-associated IgG4/7) was quantified per each spot and compared between asthmatic and healthy horses' sera (n=5 per group). Results: Ig binding differences were detected in 30 spots. Pan-Ig binding was higher with asthmatics compared to healthy horses' sera on four spots, and IgG3/5 binding was higher on 18 spots. Small IgG4/7 binding differences were detected on 10 spots with higher binding with asthmatics' sera on four but higher binding with healthy horses' sera on six spots. Proteins from the spots with group differences including mite and yeast proteins were identified by liquid chromatography mass spectrometry. The latter likely originated from the feeding substrate of the Der p culture. Prioritized antigen candidates amongst the proteins identified were Der p 1, Der p 11, group 15 allergens, myosin heavy chain, and uncharacterized Der p proteins. Additionally, yeast enolases, alcohol dehydrogenase (ADH), phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase, and heat shock proteins were prioritized. Eleven antigen candidates were tested for confirmation by ELISAs using the respective proteins separately. Differences in asthmatics vs. healthy horses' serum Ig binding to Der p 1, Der p 18, and three yeast enzymes (enolase, ADH, and PGK) confirmed these as promising antigens of immune responses in SEA. Discussion: Antigens with relevance in SEA were newly identified by immunoproteomics, and yeast antigens were considered for SEA for the first time. Serum IgG3/5 binding to relevant antigens was increased in SEA and is a novel feature that points to increased type-2 responses in SEA but requires confirmation of the corresponding cellular responses.


Assuntos
Asma , Imunoglobulina G , Humanos , Animais , Cavalos , Saccharomyces cerevisiae , Imunoglobulina E , Antígenos de Dermatophagoides , Alérgenos , Proteínas Fúngicas , Pyroglyphidae
18.
Front Immunol ; 13: 915034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784285

RESUMO

The rapid development, approval, and production of vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in less than 1 year after the first reports of a new infectious disease was a real game changer, providing 80%-90% efficacy in preventing severe etiopathologies of the coronavirus disease 2019 (COVID-19). These vaccines induce an immune response against the SARS-CoV-2 spike (S) protein located on the surface of the virus particle. Antibodies (Abs) recognizing the S-protein can inhibit binding of the virus via the S-protein to the angiotensin-converting enzyme-2 (ACE-2) receptor expressed on different human cells, especially when these Abs bind to the interaction site, the so-called receptor-binding domain (RBD). We have expressed the RBDs of wild-type SARS-CoV-2 and five variants of concern (VOCs) to test the immune response in people before vaccination with mRNA vaccines BNT162b2 and mRNA-1273 and after up to three vaccinations using in-house ELISA and inhibition assays. The methods of both assays are provided. Both vaccines initiated similarly high IgG titers after two vaccinations against the wild-type and even two VOC-RBDs (alpha and delta) and strongly inhibited the corresponding RBD-ACE-2 binding. The IgG titers and inhibition of ACE-2 binding were lower for beta and gamma RBDs and much lower for omicron RBD. The third vaccination after 6 months strongly increased both the IgG titers and the neutralizing effect against all variants, especially for omicron, leading to 63% ± 13% neutralization potential. Importantly, neutralization linearly increased with the IgG titers.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , RNA Mensageiro
19.
J Biol Chem ; 285(52): 41019-33, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20943665

RESUMO

Crystal structures of the unique hexokinase KlHxk1 of the yeast Kluyveromyces lactis were determined using eight independent crystal forms. In five crystal forms, a symmetrical ring-shaped homodimer was observed, corresponding to the physiological dimer existing in solution as shown by small-angle x-ray scattering. The dimer has a head-to-tail arrangement such that the small domain of one subunit interacts with the large domain of the other subunit. Dimer formation requires favorable interactions of the 15 N-terminal amino acids that are part of the large domain with amino acids of the small domain of the opposite subunit, respectively. The head-to-tail arrangement involving both domains of the two KlHxk1 subunits is appropriate to explain the reduced activity of the homodimer as compared with the monomeric enzyme and the influence of substrates and products on dimer formation and dissociation. In particular, the structure of the symmetrical KlHxk1 dimer serves to explain why phosphorylation of conserved residue Ser-15 may cause electrostatic repulsions with nearby negatively charged residues of the adjacent subunit, thereby inducing a dissociation of the homologous dimeric hexokinases KlHxk1 and ScHxk2. Two complex structures of KlHxk1 with bound glucose provide a molecular model of substrate binding to the open conformation and the subsequent classical domain closure motion of yeast hexokinases. The entirety of the novel data extends the current concept of glucose signaling in yeast and complements the induced-fit model by integrating the events of N-terminal phosphorylation and dissociation of homodimeric yeast hexokinases.


Assuntos
Proteínas Fúngicas/química , Hexoquinase/química , Kluyveromyces/enzimologia , Modelos Moleculares , Multimerização Proteica/fisiologia , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Glucose/química , Glucose/metabolismo , Hexoquinase/metabolismo , Fosforilação/fisiologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
20.
Plant Physiol ; 154(4): 1905-20, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20935178

RESUMO

We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls.


Assuntos
Diatomáceas/metabolismo , Pigmentos Biológicos/metabolismo , Xantofilas/metabolismo , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA