Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Eur Acad Dermatol Venereol ; 36(9): 1606-1611, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35543077

RESUMO

BACKGROUND: Pathogenic variants in KITLG, a crucial protein involved in pigmentation and neural crest cell migration, cause non-syndromic hearing loss, Waardenburg syndrome type 2, familial progressive hyperpigmentation and familial progressive hyper- and hypopigmentation, all of which are inherited in an autosomal dominant manner. OBJECTIVES: To describe the genotypic and clinical spectrum of biallelic KITLG-variants. METHODS: We used a genotype-first approach through the GeneMatcher data sharing platform to collect individuals with biallelic KITLG variants and reviewed the literature for overlapping reports. RESULTS: We describe the first case series with biallelic KITLG variants; we expand the known hypomelanosis spectrum to include a 'sock-and-glove-like', symmetric distribution, progressive repigmentation and generalized hypomelanosis. We speculate that KITLG biallelic loss-of-function variants cause generalized hypomelanosis, whilst variants with residual function lead to a variable auditory-pigmentary disorder mostly reminiscent of Waardenburg syndrome type 2 or piebaldism. CONCLUSIONS: We provide consolidating evidence that biallelic KITLG variants cause a distinct auditory-pigmentary disorder. We evidence a significant clinical variability, similar to the one previously observed in KIT-related piebaldism.


Assuntos
Perda Auditiva Neurossensorial , Hiperpigmentação , Hipopigmentação , Piebaldismo , Perda Auditiva Neurossensorial/genética , Humanos , Hipopigmentação/genética , Fator de Células-Tronco , Síndrome de Waardenburg
2.
Clin Genet ; 87(1): 49-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26011646

RESUMO

Increasing attention has been directed toward assessing mutational fallout of stereocilin (STRC), the gene underlying DFNB16. A major challenge is due to a closely linked pseudogene with 99.6% coding sequence identity. In 94 GJB2/GJB6-mutation negative individuals with non-syndromic sensorineural hearing loss (NSHL), we identified two homozygous and six heterozygous deletions, encompassing the STRC region by microarray and/or quantitative polymerase chain reaction (qPCR) analysis. To detect smaller mutations, we developed a Sanger sequencing method for pseudogene exclusion. Three heterozygous deletion carriers exhibited hemizygous mutations predicted as negatively impacting the protein. In 30 NSHL individuals without deletion, we detected one with compound heterozygous and two with heterozygous pathogenic mutations. Of 36 total patients undergoing STRC sequencing, two showed the c.3893A>G variant in conjunction with a heterozygous deletion or mutation and three exhibited the variant in a heterozygous state. Although this variant affects a highly conserved amino acid and is predicted as deleterious, comparable minor allele frequencies (MAFs) (around 10%) in NSHL individuals and controls and homozygous variant carriers without NSHL argue against its pathogenicity. Collectively, six (6%) of 94 NSHL individuals were diagnosed with homozygous or compound heterozygous mutations causing DFNB16 and five (5%) as heterozygous mutation carriers. Besides GJB2/GJB6 (DFNB1), STRC is a major contributor to congenital hearing impairment.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Sequência de Bases , Conexina 26 , Conexinas , Análise Mutacional de DNA , Primers do DNA/genética , Frequência do Gene , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Análise em Microsséries/métodos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Pseudogenes/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Deleção de Sequência/genética
3.
Mol Syndromol ; 5(1): 3-10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24550759

RESUMO

We report on a boy with non-syndromic hearing loss and an apparently balanced translocation t(10;15)(q26.13;q21.1). The same translocation was found in the normally hearing brother, father and paternal grandfather; however, this does not exclude its involvement in disease pathogenesis, for example, by unmasking a second mutation. Breakpoint analysis via FISH with BAC clones and long-range PCR products revealed a disruption of the arginyltransferase 1 (ATE1) gene on translocation chromosome 10 and the solute carrier family 12, member 1 gene (SLC12A1) on translocation chromosome 15. SNP array analysis revealed neither loss nor gain of chromosomal regions in the affected child, and a targeted gene enrichment panel consisting of 130 known deafness genes was negative for pathogenic mutations. The expression patterns in zebrafish and humans did not provide evidence for ear-specific functions of the ATE1 and SLC12A1 genes. Sanger sequencing of the 2 genes in the boy and 180 GJB2 mutation-negative hearing-impaired individuals did not detect homozygous or compound heterozygous pathogenic mutations. Our study demonstrates the many difficulties in unraveling the molecular causes of a heterogeneous phenotype. We cannot directly implicate disruption of ATE1 and/or SLC12A1 to the abnormal hearing phenotype; however, mutations in these genes may have a role in polygenic or multifactorial forms of hearing impairment. On the other hand, it is conceivable that our patient carries a disease-causing mutation in a so far unidentified deafness gene. Evidently, disruption of ATE1 and/or SLC12A1 gene function alone does not have adverse effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA